Measurement of Extensional Viscosity Using the Falling Drop Technique
CRADA PC92-007, Final Report

October 27, 1992 - September 27, 1996

Daniel K. Jones
David J. Wildman

U.S. Department of Energy
Pittsburgh Energy Technology Center
626 Cochrans Mills Road
Pittsburgh, PA 15236

and

University of Pittsburgh
350 Thackery Hall
Pittsburgh, PA 15260-4020

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Measurement of Extensional Viscosity Using the Falling Drop Technique

Daniel K. Jones and David J. Wildman

Abstract

In the falling drop technique, a drop is formed by slowly extruding a liquid downward through a small tube. The drop eventually falls, and fluid adheres to both the tube and the drop, creating a distinct extending fiber. Extensional viscosity may be determined by measuring the dimensions of the fiber as it extends. The flow of fluid in a falling drop has been modeled in order to determine extensional viscosity by measuring the extending fiber.

An falling drop rheometer was built, and fiber dimensions were measured using two digital cameras and an image processing system. Extensional viscosity was measured for various solutions of glycerol, xanthan gum, and water. The falling drop technique proved to be an effective extensional rheometer for a range of solution concentrations.

Introduction/Background

Extension has traditionally been used to determine the tensile properties of solid materials, but experiments have shown that fluids are also capable of supporting tensile stresses. Extensional viscosity is a dynamic material property, a measure of the ability of a material to resist extension. Extensional viscosity is determined by stretching a material and measuring the stress and extension rate.
Trouton started using extensional viscosity in 1906. He defined extensional viscosity and showed that the extensional viscosity was three times the shear viscosity for Newtonian fluids. Research on extensional viscosity was relatively dormant for most of the early 1900s. Shear rheometry received most of the attention because shear viscosity was known to influence flow, and shear flow was easily produced in the laboratory. Over the past 20 years, there has been increased interest in extensional flows. This is due, in part, to the increased use of polymer solutions and melts which undergo large extensional strains. The response of materials in extension must be better understood for the development and testing of new constitutive equations. The Pittsburgh Energy Technology Center became interested in extensional viscosity of coal-water mixtures and its role in the atomization and combustion.

The Falling Drop Technique

The falling drop rheometer, originally developed by Jones et al., subjects a test fluid to uniaxial extension. The fluid is slowly extruded through a vertical capillary tube. A pendant drop forms at the bottom of the tube and is pulled downward by gravity. As the drop falls, a fiber forms between the drop and the tube, as shown in Figure 1.

Because fluid adheres to both the tube and the drop, the fiber stretches as the drop falls, producing a long cylindrical fiber. The weight of the drop extends the fiber, while surface tension and extensional viscosity resist extension of the fiber. Dilute polymer solutions produce fibers that are quite long and uniform in diameter.

Jones and Wildman
Model

For derivation of the falling drop model and equations for determining extensional viscosity from the measured parameters, refer to the doctoral dissertation by Jones. In cylindrical coordinates, extensional viscosity is defined as

\[ \eta_e = \frac{\tau_{zz} - \tau_{rr}}{\dot{e}} \]

Extensional viscosity is a measure of the normal stress difference divided by the extension rate. The model describes the uniaxial extension of a fiber, including the effects of inertia, extensional viscosity, and surface tension.

Equipment

In the falling drop apparatus, fluid was driven downward by gravity through a funnel, a flexible tube, and a glass tube with a ground tip and inside diameter of 0.8 mm. Refer to Figure 2 for a sketch of the equipment used for falling drop experiments. A valve provided adjustment to produce consistent drops at a rate of 5 drops per second, with repeatable extending fibers for a variety of test fluids. Two digital cameras and an image processing system measured the dimensions of the falling drops and extending fibers at 500 Hz. This typically produced 50 measurements of the extending fibers over a time interval of 0.1 to 0.2 seconds.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jones and Wildman
Extensional viscosity was determined when extending fibers were uniform in diameter. Uncertainty was determined for extensional viscosity measurements according to ASME standards.6

Results
Experiments were conducted for various solutions of corn syrup, glycerol, xanthan gum, and water. Extensional viscosity was measured for pure glycerol, 0.4% xanthan gum in deionized water, and various concentrations of xanthan gum in 90:10 glycerol:water solutions. Special care was taken to ensure that measurements were made only on fibers with uniform diameters.

The test fluids produced repeatable fibers that were up to 20 cm long and remarkably uniform in diameter. Figure 3 shows plots of extensional viscosity verses extension rate for representative materials.

Table 1 lists the range of extensional viscosity measurements for various solutions along with the associated uncertainties. By inspecting the curves in Figure 3, the peak values may be used to characterize the material.

Discussion
Extensional viscosity of pure water could not be measured using the falling drop technique. When pure water drops fell, they quickly snapped away from the tube tip without forming fibers. However, adding a small amount of xanthan gum to the water

Jones and Wildman
had a dramatic effect on fiber formation. Dilute xanthan gum solutions produced uniform fibers that exceeded 6 cm in length. Similar effects were observed with glycerol-water solutions. Adding small amounts of xanthan gum to the water and glycerol-water solutions did not have a substantial effect on the measured surface tension. Consequently, the changes in fiber extensions are attributed to changes in the extensional viscosity.

The falling drop technique provides a limited ability to control the extension rate, and this method cannot measure extensional viscosity at a constant extension rate. Further analysis is ongoing to provide a more complete characterization of the extensional viscosity for the various solutions.

References


Figure 1. Falling Drop and Stretching Fiber.

Figure 2. Equipment Used for Falling Drop Experiments.
Figure 3. Extensional Viscosity verses Extension Rate for Representative Materials.

- □ = 90:10 C:W, 50 ppm Xan, 24°C, Drop 931
- ○ = 0.4% Xanthan in Water, 27°C, Drop 843
- Δ = Pure Glycerol, 26°C, Drop 811
Table 1. Summary of Extensional Viscosity Measurements.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. (°C)</th>
<th>$\dot{\varepsilon}$ (sec$^{-1}$)</th>
<th>$\eta_e \pm U_{\eta_e}$ (poise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycerol</td>
<td>26</td>
<td>30-40</td>
<td>0.26 ± 20</td>
</tr>
<tr>
<td>0.4 % xanthan</td>
<td>21</td>
<td>23-40</td>
<td>0.18 ± 20</td>
</tr>
<tr>
<td>0.4 % xanthan</td>
<td>27</td>
<td>20-40</td>
<td>15-48 ± 30</td>
</tr>
<tr>
<td>0.4 % xanthan</td>
<td>31</td>
<td>25-32</td>
<td>0</td>
</tr>
<tr>
<td>GWX 90:10, 50ppm</td>
<td>24</td>
<td>18-23</td>
<td>0.21 ± 15</td>
</tr>
<tr>
<td>GWX 90:10,100ppm</td>
<td>22</td>
<td>8-10</td>
<td>20-140 ± 30</td>
</tr>
<tr>
<td>GWX 90:10,200ppm</td>
<td>27</td>
<td>7</td>
<td>12-133 ± 30</td>
</tr>
<tr>
<td>GWX 90:10,100ppm</td>
<td>38</td>
<td>22-27</td>
<td>9-20 ± 15</td>
</tr>
</tbody>
</table>

Jones and Wildman