Tritium Reduction and Control in the Vacuum Vessel during TFTR Outage and Decommissioning

PDF Version Also Available for Download.

Description

In the summer/fall of 1996 after nearly three years of D-T operations, TFTR underwent an extended outage during which large port covers were removed from the vacuum vessel in order to complete upgrades to the tokamak. Following the venting of the torus, a three-tier system was developed for the outage in order to reduce and control the free tritium in the vacuum vessel so as to minimize the exposure to personnel during port cover removal and reinstallation. The first phase of the program to reduce the free tritium consisted of direct flowthrough of room air through the vacuum vessel to ... continued below

Physical Description

4 p.; Other: FDE: PDF; PL:

Creation Information

Blanchard, W.; Camp, R. & Carnevale, H. December 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In the summer/fall of 1996 after nearly three years of D-T operations, TFTR underwent an extended outage during which large port covers were removed from the vacuum vessel in order to complete upgrades to the tokamak. Following the venting of the torus, a three-tier system was developed for the outage in order to reduce and control the free tritium in the vacuum vessel so as to minimize the exposure to personnel during port cover removal and reinstallation. The first phase of the program to reduce the free tritium consisted of direct flowthrough of room air through the vacuum vessel to the molecular sieve beds using the Torus Cleanup System. Real-time measurements of the effluent tritium concentration were used to derive the amount of tritium removed from the torus. Once the free tritium in the vessel had been reduced to approximately 50 Ci, a second phase was initiated using a 55 Gallon Drum Bubbler System for the direct processing of the vacuum vessel to further lower the tritium level in the torus. Tritium oxide is absorbed by the bubbler system with the exhaust vented to one of the tritium monitored HVAC ventilation stacks. To preclude the release of tritium to the Test Cell location of TFTR and to minimize the exposure of workers, a variable flow exhaust system was employed in order to maintain a negative pressure in the vacuum vessel between 0.05 inches and 1.5 inches w.c. during the removal of port covers ranging in size from approximately 5 to 1000 square inches. These systems were completely successful in reducing and controlling the free tritium in TFTR and were instrumental in maintaining ALARA (As Low As Reasonably Achievable) exposures to tritium during the 1996 outage. These systems are again being utilized during the safe shutdown and decommissioning of TFTR which commenced in April of 1997. This paper describes in detail the configuration of these systems and the data obtained during the outage and safe shutdown of TFTR.

Physical Description

4 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98051421

Source

  • Other Information: PBD: [1997]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98051421
  • Report No.: PPPL--3275
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/620651 | External Link
  • Office of Scientific & Technical Information Report Number: 620651
  • Archival Resource Key: ark:/67531/metadc691295

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 15, 2016, 6:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Blanchard, W.; Camp, R. & Carnevale, H. Tritium Reduction and Control in the Vacuum Vessel during TFTR Outage and Decommissioning, report, December 1, 1997; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc691295/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.