Title: Improved Risk Estimates for Carbon Tetrachloride

Principal Investigator:
Janet M. Benson, Lovelace Respiratory Research Institute

Key Co-Investigators:
Kristen J. Nikula, Lovelace Respiratory Research Institute
Edward B. Barr, Lovelace Respiratory Research Institute
David L. Springer, Pacific Northwest National Laboratory
Karla D. Thrall, Pacific Northwest National Laboratory

Progress May 1 - July 31, 1997

Task 1: Compare the rates of carbon tetrachloride metabolism by rats, mice, and hamsters in vivo. Determine the rates of carbon tetrachloride metabolism in vitro using microsome preparations from livers of humans (available from tissue culture bank), F344 rats, B6C3F1 mice and Syrian hamsters. The materials needed for construction of the closed atmosphere exposure system for measurement of carbon tetrachloride uptake by the laboratory animals have been purchased, and construction of the system is underway. The system is expected to be operational by late summer.

Task 2: Using hepatic microsome preparations, determine the role of specific cytochrome P450 isoforms in mediating carbon tetrachloride induced toxicity in laboratory animals. The effects of repeated inhalation and ingestion exposure to carbon tetrachloride on these isoforms will also be determined.

A postdoctoral fellow, Dr. Richard Zangar, has been hired by Dr. David Springer to conduct the cytochrome 450 studies. He will begin work during August 1997. Dr. Zangar visited the Lovelace Respiratory Research Institute in June to review procedures for preparation and storage of microsomes for the work to be conducted at Pacific Northwest National Laboratories.

Inhalation exposures of rats, mice and hamsters to carbon tetrachloride began in June. Microsomal fractions from livers of all species exposed to 0, 5, 20 and 100 ppm carbon tetrachloride for 1 week have been prepared and are being stored frozen for future analysis.
Task 3: Evaluate the toxicokinetics of acutely inhaled and ingested carbon tetrachloride in rats, mice and Syrian hamsters as a function of exposure concentration in air or water. The effects of previous inhalation exposure to or ingestion of carbon tetrachloride on the toxicokinetics of subsequently inhaled or ingested carbon tetrachloride will also be determined.

The toxicokinetic studies will be conducted early in FY98. Dr. Karla Thrall will participate in the conduct of these studies.

Task 4: Revise the current PBPK model for Carbon Tetrachloride based on information obtained under Tasks 1, 2 and 3.

This work will be conducted in FY98 when the needed information has become available.

Task 5: Determine whether inhalation exposure conditions ultimately resulting in liver tumors in rats and mice produce hepatic cell injury, death, and regenerative proliferation under conditions of subchronic exposure. Determine whether repeated ingestion of carbon tetrachloride in drinking water at concentrations 100 and 1000 times the current drinking water standards results in hepatic cell injury, death, and regenerative proliferation.

Inhalation exposures to address the goals of Task 5 began in June. The 1- and 4-week sacrifices of rats, mice and hamsters exposed to 0, 5, 20 and 100 ppm carbon tetrachloride have been completed. Final sacrifices of rats and mice will occur in September 1997. Because of unexpected high mortality among hamsters on study, we may be starting new groups on study to address the issues in Task 1 and 5.

Initial work on the drinking water study has begun. The protocol has been prepared and studies on palatability and consumption rate have begun. The drinking water study will be conducted in late September or October 1997.
May 30, 1997

Michael G. Loera
Contracts and Procurement Division
Albuquerque Operations Office
P.O. Box 5400
Building 388
Albuquerque, NM 87185

Dear Mr. Loera:

Enclosed are four copies each of the Technical Progress Report for FY1997 for the work we are conducting for the Environmental Management Science Program under Cooperative Agreement DE-FC04-96AL76406. If you have any questions on this material, please contact Chuck Hobbs (845-1045) or me (262-7938).

Sincerely,

Joe L. Mauderly
President, LBERI

JLM:ah

xc: Joe Rudolph
 Chuck Hobbs
 Kathy Aragon
TECHNICAL PROGRESS REPORT

to the

U.S. DEPARTMENT OF ENERGY

for research conducted by

THE LOVELACE RESPIRATORY RESEARCH INSTITUTE

through its subsidiary

LOVELACE BIOMEDICAL AND
ENVIRONMENTAL RESEARCH INSTITUTE

for the

OFFICE OF ENVIRONMENTAL MANAGEMENT/SCIENCE PROGRAM

under

COOPERATIVE AGREEMENT

DE-FC04-96AL76406

during

October 1, 1996 - September 30, 1997

Submitted May 30, 1997

Joe L. Mauderly, DVM, President, LBERI
Project Contact
P.O. Box 5890
Albuquerque, NM 87185
Phone: 505-262-7938

Charles H. Hobbs, DVM, Vice Pres., LBERI
Business Contact
P.O. Box 5890
Albuquerque, NM 87185
Phone: 505-845-1045
TECHNICAL PROGRESS REPORT FOR OFFICE OF ENVIRONMENTAL MANAGEMENT/SCIENCE PROGRAM

Project EMSP-1

Title:
Improved Risk Estimated from Carbon Tetrachloride

Principal Investigator:
Janet M. Benson

Key Co-Investigators:
Kristen J. Nikula
Edward B. Barr
David L. Springer, Pacific Northwest National Laboratory
Karla D. Thrall, Pacific Northwest National Laboratory

Abstract
Carbon tetrachloride (CCl₄) has been used extensively within the Department of Energy (DOE) nuclear weapons facilities. Rocky Flats was formerly the largest volume user of CCl₄ in the United States, with 5000 gallons used there in 1977 alone. At the Hanford site, several hundred thousand gallons of CCl₄ were discharged between 1955 and 1973 into underground cribs for storage. Levels of CCl₄ in groundwater at highly contaminated sites at the Hanford facility have exceeded the drinking water standard of 5 ppb by several orders of magnitude. High levels of CCl₄ at these facilities represent a potential health hazard for workers conducting cleanup operations and for surrounding communities. The level of CCl₄ cleanup required at these sites and associated costs are driven by current human health risk estimates which assume that CCl₄ is a genotoxic carcinogen. The overall purpose of these studies is to improve the scientific basis for assessing the health risk associated with human exposure to CCl₄. Specifically, we will determine the toxicokinetics of inhaled and ingested CCl₄ in F344/Crl rats, B6C3F₁ mice, and Syrian hamsters. We will also evaluate species differences in the metabolism of CCl₄ by rats, mice, hamsters, and man. Dose-response relationships will be determined in all these studies. This information will be used to improve the physiologically based pharmacokinetic (PBPK) model for CCl₄ originally developed by Paustenbach et al. (1988) and more recently revised by Thrall and Kenny (1996). We will also provide scientific evidence that CCl₄, like chloroform, is a hepatocarcinogen only when exposure results in cell damage, cell killing, and regenerative cell proliferation. In combination, the studies outlined in this proposal will provide the exact types of information needed to enable refined cancer risk estimates for CCl₄ under the new guidelines for risk assessment proposed by the EPA in April 1996 (U.S. EPA, 1996).

Recent Progress
This is a new project. Experimentation has just begun (May 1997).
Future Direction and Expected Progress

- We will compare the rates of CCl₃ metabolism by rats, mice, and hamsters *in vivo*. Extrapolations to man will be based on parallel studies of the metabolism of CCl₃ by rat, mouse, hamster, and human liver slices *in vitro*.

- Using hepatic microsome preparations, we will determine the role of specific cytochrome P450 isoforms in CCl₃ mediation toxicity for laboratory animals and relate this to humans. The effects of repeated inhalation and ingestion exposure of CCl₃ on these isoforms will also be determined.

- We will evaluate the toxicokinetics of acutely inhaled and ingested CCl₃ in rats, mice, and Syrian hamsters as a function of exposure concentration of ingested dose. The effects of previous inhalation exposure to or ingestion of CCl₃ on the toxicokinetics of subsequently inhaled or ingested ¹⁴CCl₃ will also be determined.

- We will revise the current PBPK model for CCl₃, based on information obtained from the above experiments.

- We will determine whether exposure conditions ultimately resulting in liver tumors in rats and mice produce hepatic cell injury, death, and regenerative proliferation under conditions of subchronic exposure. Conversely, we will determine whether exposure conditions that do not ultimately result in liver tumors in these species correspond to a no-observable-adverse-effects level (NOAEL) for these histopathologic and proliferative effects.

- We will determine whether repeated ingestion of CCl₃ in drinking water at concentrations 100 and 1000 times the current drinking water standards results in hepatic cell injury, death, and regenerative proliferation.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.