An analytic solution to a driven interface problem

PDF Version Also Available for Download.

Description

The frictional properties of sliding metal interfaces at high velocities are not well known from either an experimental or theoretical point of view. The constitutive properties and macroscopic laws of frictional dynamics at high velocities necessary for materials continuum codes have only a qualitative validity and it is of interest to have analytic problems for sliding interfaces to enable separation of model from numerical effects. The authors present an exact solution for the space and time dependence of the plastic strain near a sliding interface in a planar semi-finite geometry. This solution is based on a particular form for the ... continued below

Physical Description

8 p.

Creation Information

Hammerberg, J.E. & Pepin, J. October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Hammerberg, J.E.
  • Pepin, J. Los Alamos National Lab., NM (United States). Applied Theoretical and Computational Physics Div.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The frictional properties of sliding metal interfaces at high velocities are not well known from either an experimental or theoretical point of view. The constitutive properties and macroscopic laws of frictional dynamics at high velocities necessary for materials continuum codes have only a qualitative validity and it is of interest to have analytic problems for sliding interfaces to enable separation of model from numerical effects. The authors present an exact solution for the space and time dependence of the plastic strain near a sliding interface in a planar semi-finite geometry. This solution is based on a particular form for the strain rate dependence of the flow stress and results in a hyperbolic telegrapher equation for the plastic strain. The form of the solutions and wave structure will be discussed.

Physical Description

8 p.

Notes

OSTI as DE97008324

Source

  • Meeting of the topical group on shock compression of condensed matter of the American Physical Society, Amherst, MA (United States), 27 Jul - 1 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008324
  • Report No.: LA-UR--97-2902
  • Report No.: CONF-970707--7
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 537332
  • Archival Resource Key: ark:/67531/metadc691175

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 1:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hammerberg, J.E. & Pepin, J. An analytic solution to a driven interface problem, article, October 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc691175/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.