Task 3.8 - pressurized fluidized-bed combustion

PDF Version Also Available for Download.

Description

The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that ... continued below

Physical Description

33 p.

Creation Information

Creator: Unknown. March 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

Physical Description

33 p.

Notes

OSTI as DE97005402

Source

  • Other Information: PBD: Mar 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97005402
  • Report No.: DOE/MC/30097--5673
  • Grant Number: FC21-93MC30097
  • DOI: 10.2172/574194 | External Link
  • Office of Scientific & Technical Information Report Number: 574194
  • Archival Resource Key: ark:/67531/metadc690964

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1995

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 2, 2016, 1:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Task 3.8 - pressurized fluidized-bed combustion, report, March 1, 1995; Grand Forks, North Dakota. (digital.library.unt.edu/ark:/67531/metadc690964/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.