Development path of low aspect ratio tokamak power plants

PDF Version Also Available for Download.

Description

Recent advances in tokamak physics indicate the spherical tokamak may offer a magnetic fusion development path that can be started with a small size pilot plant and progress smoothly to larger power plants. Full calculations of stability to kink and ballooning modes show the possibility of greater than 50% beta toroidal with the normalized beta as high as 10 and fully aligned 100% bootstrap current. Such beta values coupled with 2--3 T toroidal fields imply a pilot plant about the size of the present DIII-D tokamak could produce {approximately} 800 MW thermal, 160 MW net electric, and would have a ... continued below

Physical Description

17 p.

Creation Information

Stambaugh, R.D.; Chan, V.S. & Miller, R.L. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent advances in tokamak physics indicate the spherical tokamak may offer a magnetic fusion development path that can be started with a small size pilot plant and progress smoothly to larger power plants. Full calculations of stability to kink and ballooning modes show the possibility of greater than 50% beta toroidal with the normalized beta as high as 10 and fully aligned 100% bootstrap current. Such beta values coupled with 2--3 T toroidal fields imply a pilot plant about the size of the present DIII-D tokamak could produce {approximately} 800 MW thermal, 160 MW net electric, and would have a ratio of gross electric power over recirculating power (Q{sub PLANT}) of 1.9. The high beta values in the ST mean that E x B shear stabilization of turbulence should be 10 times more effective in the ST than in present tokamaks, implying that the required high quality of confinement needed to support such high beta values will be obtained. The anticipated beta values are so high that the allowable neutron flux at the blanket sets the device size, not the physics constraints. The ST has a favorable size scaling so that at 2--3 times the pilot plant size the Q{sub PLANT} rises to 4--5, an economic range and 4 GW thermal power plants result. Current drive power requirements for 10% of the plasma current are consistent with the plant efficiencies quoted. The unshielded copper centerpost should have an adequate lifetime against nuclear transmutation induced resistance change and the low voltage, high current power supplies needed for the 12 turn TF coil appear reasonable. The favorable size scaling of the ST and the high beta mean that in large sizes, if the copper TF coil is replaced with a superconducting TF coil and a shield, the advanced fuel D-He{sup 3} could be burned in a device with Q{sub PLANT} {approximately} 4.

Physical Description

17 p.

Notes

INIS; OSTI as DE97008401

Source

  • ISFNT-4: 4th international symposium on fusion nuclear technology, Tokyo (Japan), 6-11 Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008401
  • Report No.: GA--A22565
  • Report No.: CONF-970404--10
  • Grant Number: AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 515622
  • Archival Resource Key: ark:/67531/metadc690935

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 18, 2016, 5:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stambaugh, R.D.; Chan, V.S. & Miller, R.L. Development path of low aspect ratio tokamak power plants, article, March 1, 1997; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc690935/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.