Integration of Geologic Interpretation into Geostatistical Simulation

Steven F. Carle

This paper was prepared for submittal to the
International Association for Mathematical Geology
Barcelona, Spain
September 22-27, 1997

June 1997

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
INTEGRATION OF GEOLOGIC INTERPRETATION INTO GEOSTATISTICAL SIMULATION

Steven F. Carle
Lawrence Livermore National Laboratory, L-206
Livermore, California, 94551, USA

SUMMARY. Embedded Markov chain analysis has been used to quantify geologic interpretation of juxtapositional tendencies of geologic facies. Such interpretations can also be translated into continuous-lag Markov chain models of spatial variability for use in geostatistical simulation of facies architecture.

1. INTRODUCTION

Traditional indicator geostatistical approaches rely on empirical curve-fitting of indicator variograms to develop models of spatial variability from detailed data sets or "training images." However, most real-world data sets characterize spatial variability adequately in the vertical direction at best. Direct means are needed for infusing subjective knowledge of facies architecture into the conditional simulation process, so that the resulting "realizations" are indeed realistic.

Alternatively, indicator geostatistics can be recast in a conceptually simple yet theoretically powerful transition probability/Markov framework. Model parameters directly relate to fundamental properties of proportions, mean length, and juxtapositional tendencies. Mathematically, Markov chains consist of linear combinations exponential functions, although a spectrum of model shapes can be produced, including "hole effect" and Gaussian-like structures. Asymmetric juxtapositional patterns such as fining-upward tendencies common to fluvial depositional systems can be considered. An example is developed for a hypothetical fluvial system with no data to demonstrate possibilities for implementing geostatistics in situations of sparse data.

2. EMBEDDED MARKOV CHAIN ANALYSIS

Markov chain analysis has been used by geologists since Vistelius in 1949 [13] for quantitative interpretation of juxtapositional tendencies in vertical stratigraphic successions and, more specifically, to address various questions arising in geologic interpretation, for example:

- Does a vertical sequence exhibit a fining-upward tendency?
- Are lateral juxtapositional tendencies similar to those in the vertical (i.e., Walther's Law)?
- What is the degree of order (vs. disorder) in the juxtapositional tendencies?

Now consider a fluvial system consisting of five facies:

1 = lower channel (lc)
2 = upper channel (uc)
3 = levee/crevasse splay (lcs)
4 = floodplain (fl)
5 = peat (pt)

Embedded Markov chain analysis [5,6,9,10] evaluates the probabilities of one geologic unit occurring adjacent to another in a particular direction, say vertical (z), in terms of
transition frequencies $\phi_{jk,z}$

$$
\phi_{45,z} = \Pr \{fl \text{ occurs below and } pt \text{ occurs above}\}
$$
or transition (conditional) probabilities $\pi_{jk,z}$

$$
\pi_{45,z} = \Pr \{pt \text{ occurs above } | fl \text{ occurs below}\}
$$

For example, a classical fining-upward tendency of

$$
lc \rightarrow uc \rightarrow lcs \rightarrow fl \rightarrow pt
$$

would be evident in a vertical embedded transition probability matrix Π_z of

$$
\Pi_z = \begin{bmatrix}
\pi_{11,z} & \cdots & \pi_{1K,z} \\
\vdots & \ddots & \vdots \\
\pi_{K1,z} & \cdots & \pi_{KK,z}
\end{bmatrix} = \begin{bmatrix}
- & 1.0 & 0 & 0 & 0 \\
0.005 & - & 0.600 & 0.395 & 0 \\
0.005 & 0.020 & - & 0.975 & 0 \\
0.071 & 0.036 & 0.570 & - & 0.324 \\
0.020 & 0 & 0 & 0.980 & -
\end{bmatrix}
$$

3. MAXIMUM DISORDER

The juxtapositional tendencies in a geologic system reflect some degree of order (or disorder) in the stratigraphy [6]. Indeed, the disorder in a particular direction, say z, can be measured by the entropy S_z of the transition frequencies $\phi_{jk,z}$

$$
S_z = - \sum_j \sum_k \phi_{jk,z} \ln \phi_{jk,z}
$$

Given the frequencies of the embedded occurrences $\phi_{j,z}$

$$
\phi_{j,z} = \sum_k \phi_{jk,z} = \sum_k \phi_{kj,z}
$$
a system of maximally disordered juxtapositional tendencies can be found by maximizing (2) subject to (3) using iterative proportion fitting (IPF) [7]. A “maximum entropy” transition probability matrix $\Pi_z(S_{\text{max}})$ can then be obtained by dividing the maximum entropy transition frequencies by their row sums

$$
\Pi_z(S_{\text{max}}) = \begin{bmatrix}
- & 0.028 & 0.143 & 0.763 & 0.066 \\
0.016 & - & 0.145 & 0.773 & 0.066 \\
0.018 & 0.032 & - & 0.874 & 0.075 \\
0.062 & 0.111 & 0.566 & - & 0.260 \\
0.016 & 0.030 & 0.150 & 0.804 & -
\end{bmatrix}
$$

The fining-upward tendency is evident in Π_z because the $\pi_{j(j+1)}$ entries are greater than in $\Pi_z(S_{\text{max}})$.

4. CONTINUOUS-LAG MARKOV CHAIN MODELS

Markov chain models can also be constructed with a spatial dependency to formulate a geostatistical model of spatial variability [3,8,9]. A transition probability matrix $T(h)$ is constructed as a function of time or distance separation or “lag” h. Under a Markov assumption, the probability of a category k occurring at a location x depends on the transition probability matrix $T(\Delta h)$ for the nearest datum located at $x - \Delta h$. Spatial Markov chains are usually formulated in the discrete form by successive multiplication of $T(\Delta h)$, which has limited applicability because it depends on a regular data spacing.

A more general mathematical expression of a Markov chain model is given by the continuous-lag form

$$
T(h) = \exp [Rh]
$$
a vertical transition rate matrix R_z can be established from Π_z and (7) as

$$R_z = \begin{bmatrix}
-1.2500 & 1.2500 & 0 & 0 & 0 \\
0.0025 & -0.5000 & 0.3000 & 0.1975 & 0 \\
0.0125 & 0.0500 & -2.5000 & 2.4375 & 0 \\
0.1211 & 0.0611 & 0.9778 & -1.7156 & 0.5556 \\
0.0500 & 0 & 0 & 2.4500 & -2.5000
\end{bmatrix} \text{ m}^{-1}$$

which yields the continuous-lag Markov chain model shown in Figure 1. Similarly, the maximum entropy embedded transition probability matrix can be transformed to obtain a “maximum entropy” continuous-lag Markov chain model, also shown in Figure 1.

The column and row summing constraints (5) and (6) eliminate the need to specify entries for one row and column. If symmetry is assumed for a particular cross-relationship, then the relationship

$$\tau_{jk} = \left(\frac{p_k}{p_j} \right) \tau_{kj} \quad (8)$$

holds, so that only one of the opposing upper or lower off-diagonal entries needs to be specified. For example, a strike (x)-direction Π_x could be developed conceptually as

$$\Pi_x = \begin{bmatrix}
- & 0.87 & 0.07 & (6) & 0.01 \\
(8) & - & (8) & (6) & 0 \\
(8) & 0.50 & - & (6) & 0 \\
(5) & (5) & (5) & (5) & (5) \\
(8) & (8) & (8) & (6) & -
\end{bmatrix}$$

where the entries in parentheses indicate the equations applied. Assuming proportions
as above and \(x \)-direction mean lengths of \((10, 20, 20, *, 50) \) meters, the corresponding transition rate matrix \(R_x \) becomes

\[
R_x = \begin{bmatrix}
-0.1000 & 0.0870 & 0.0070 & 0.0050 & 0.0010 \\
0.0218 & -0.0500 & 0.0200 & 0.0083 & 0 \\
0.0018 & 0.0200 & -0.0400 & 0.0183 & 0.0000 \\
0.0006 & 0.0037 & 0.0081 & -0.0167 & 0.0433 \\
0.0005 & 0 & 0 & 0.0195 & -0.0200
\end{bmatrix}
\]

Two- or 3-D Markov chain models can then be developed by ellipsoidally interpolating transition rates [4] so that spatial variability in any one direction is modeled by a 1-D Markov chain [11].

Two- or 3-D Markov chain models can then be developed by ellipsoidally interpolating transition rates [4] so that spatial variability in any one direction is modeled by a 1-D Markov chain [11].

6. GEOSTATISTICAL SIMULATION

The 3-D Markov chain model can be used to formulate cokriging estimates [2,3] and objective functions used in the implementation of sequential indicator simulation and simulated quenching (zero-temperature annealing) geostatistical simulation algorithms [4], respectively. Figure 2 shows a perspective view of a 3-D "realization" resulting from the interpreted 3-D Markov chain model. Fining upward tendencies as per (1) are clearly evident, as are juxtapositional tendencies of

- \(lcs \) occurring laterally adjacent to \(uch \)
- \(lch \) occurring below \(uch \)

This geologically-plausible facies architecture was originally prescribed in the embedded transition probability matrix and carried through to end result of the geostatistical simulation process. As a comparison, Markov chains with "maximum entropy" juxtapositional tendencies were used to implement the geostatistical simulation procedure to create the realization shown in Figure 3. The main difference between the two realizations appears to be the location of \(lch \), which is reflected in the difference between the interpreted and
as above and x-direction mean lengths of (10, 20, 20, *, 50) meters, the corresponding transition rate matrix R_x becomes:

$$
R_x = \begin{bmatrix}
-0.1000 & 0.0870 & 0.0070 & 0.0050 & 0.0010 \\
0.0218 & -0.0500 & 0.0200 & 0.0083 & 0 \\
0.0018 & 0.0200 & -0.0400 & 0.0183 & 0.0000 \\
0.0006 & 0.0037 & 0.0081 & -0.0167 & 0.0433 \\
0.0005 & 0 & 0 & 0.0195 & -0.0200
\end{bmatrix}
$$

Two- or 3-D Markov chain models can then be developed by ellipsoidally interpolating transition rates [4] so that spatial variability in any one direction is modeled by a 1-D Markov chain [11].

![Figure 2. Geostatistical simulation based on interpreted Markov chain models.](image1)

![Figure 3. Geostatistical simulation based on maximum entropy juxtapositional tendencies.](image2)

6. GEOSTATISTICAL SIMULATION

The 3-D Markov chain model can be used to formulate cokriging estimates [2,3] and objective functions used in the implementation of sequential indicator simulation and simulated quenching (zero-temperature annealing) geostatistical simulation algorithms [4], respectively. Figure 2 shows a perspective view of a 3-D “realization” resulting from the interpreted 3-D Markov chain model. Fining upward tendencies as per (1) are clearly evident, as are juxtapositional tendencies of

- lcs occurring laterally adjacent to uch
- lch occurring below uch

This geologically-plausible facies architecture was originally prescribed in the embedded transition probability matrix and carried through to end result of the geostatistical simulation process. As a comparison, Markov chains with “maximum entropy” juxtapositional tendencies were used to implement the geostatistical simulation procedure to create the realization shown in Figure 3. The main difference between the two realizations appears to be the location of lch, which is reflected in the difference between the interpreted and
maximum entropy vertical Markov chain models of Figure 1. Comparison of flow and transport modeling results for both geologically-ordered and maximally disordered systems could add to understanding of the role of facies architecture in hydrogeologic and petroleum reservoir system behavior.

7. CONCLUSIONS

The Markov chain approach ensures a consistency with probability laws and geologic interpretation, which demands a rigorous understanding of the model parameters. The resulting interpretability facilitates interplay and feedback between the spatial variability modeling procedure, geology, and geostatistical simulation results as compared to the more prevalent empirical approaches.

ACKNOWLEDGMENTS

The author thanks Marc Bierkens for sharing his data set, John Doveton for suggesting IPF, and U.C. Davis, Lawrence Livermore National Laboratory, and the U.S. Waterways Experimentation Station for supporting this research.

REFERENCES

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.