Title: 7Be \((p, \gamma)\)8B and the High-energy solar neutrino flux

Author(s): Attila Csoto, Theoretical Division, T-5, MS B243, P.O. Box 1663, Los Alamos National Laboratory, Los Alamos, NM 87545 USA

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
$^7\text{Be}(p,\gamma)^8\text{B}$ and the high-energy solar neutrino flux

Attila Csótó
Theoretical Division, Los Alamos National Laboratory,
Los Alamos NM 87545, USA

Received 1 January 1996; revised version 1 January 1997

Abstract. The importance of the $^7\text{Be}(p,\gamma)^8\text{B}$ reaction in predicting the high-energy solar neutrino flux is discussed. I present a microscopic eight-body model and a potential model for the calculation of the $^7\text{Be}(p,\gamma)^8\text{B}$ cross section.

1. Introduction

Today the neutron halo structure in some nuclei near the neutron drip line is well established. The proton drip line is, however, less well understood. The first (and so far still best) candidate for a proton halo structure was ^8B. In this paper I show how important it is to understand the structure of ^8B in order to be able to give precise predictions for the high-energy solar neutrino flux.

The high level of sophistication achieved in standard electroweak and stellar physics enables us to understand in detail the synthesis and evolution of the elements of the Universe in the Big Bang and in stars. The astronomical observations and theoretical predictions are in a very good general agreement with each other, with a few notable exceptions. Probably the most notorious of these exceptions is the solar neutrino problem. Despite thirty years of extensive experimental and theoretical work, the predicted solar neutrino flux is still in sharp disagreement with measurements. The solar neutrino measurements strongly suggest that the problem cannot be solved within the standard electroweak and astrophysical theories. Thus, the solar neutrino problem constitutes the strongest (and so far almost only) evidence for physics beyond the Standard Model [1].

Whatever the solution of the solar neutrino problem turns out to be, it is of paramount importance that the input parameters of the underlying electroweak and solar theories rest upon solid ground. The most uncertain nuclear input parameter in standard solar models is the low-energy $^7\text{Be}(p,\gamma)^8\text{B}$ radiative capture cross section. This reaction produces ^8B in the Sun, whose β^+ decay is the main source of the high-energy solar neutrinos. Many present and future solar neutrino detectors...
are sensitive mainly or exclusively to the 8B neutrinos (Fig. 1).

The predicted 8B neutrino flux is proportional to S_{17}, the 7Be($p, \gamma)^8$B astrophysical S factor ($S(E) = \sigma(E)E \exp[2\pi\eta(E)]$), at solar energies ($E_{cm} = 20$ keV). Thus, the value of $S_{17}(20$ keV) is a crucial input parameter in solar models.

Currently there is a considerable confusion concerning the value of $S_{17}(0)$. The six direct capture measurements performed to date give $S_{17}(0)$ between 15 eVb and 40 eVb, with a weighted average of 22.2 ± 2.3 eVb, while a recent Coulomb dissociation measurement gave $S_{17}(0) = 16.7 \pm 3.2$ eVb. The theoretical predictions for $S_{17}(0)$ also have a huge uncertainty, as the various models give values between 16 eVb and 30 eVb. For an experimental and theoretical summary, see [2].

In order to set tighter theoretical limits on the value of S_{17}, the nonresonant part of the 7Be($p, \gamma)^8$B reaction has been studied in a microscopic eight-body model [3] and in a 7Be+p potential model [4], respectively.

2. 7Be($p, \gamma)^8$B cross section constrained by A=7 and 8 observables

The relatively low temperature (on nuclear scale) of our Sun means that all charged-particle reactions in the energy-generating solar p-p chain take place well below the Coulomb barrier. In such cases the radiative capture cross section gets contributions almost exclusively from the external nuclear regions ($r > 6-8$ fm). At such distances the scattering (7Be+p) and bound state (8B) wave functions are fully determined, provided the scattering phase shifts and bound state asymptotic normalizations are known. At solar energies the phase shifts coincide with the (almost zero) hard sphere phase shifts, while the bound state wave function in the external region behaves like $\tilde{c}W^+(kr)/r$, where W^+ is the Whittaker function and \tilde{c} is the asymptotic normalization. So the only unknown parameters that govern the solar radiative
capture reactions, like $^{7}\text{Be}(p,\gamma)^{8}\text{B}$, are the \bar{c} values. The \bar{c} normalization depends mainly on the effective $^{7}\text{Be}-p$ interaction radius. A larger radius results in a lower Coulomb barrier, which leads to a higher tunneling probability into the external region, and thus to a higher cross section. Our aim is to constrain the theoretical interaction radius by some properties of $A=7$ and 8 observables.

In the first model [3] an eight-body three-cluster wave function is used, which is variationally converged and virtually complete in the $^{4}\text{He}+^{3}\text{He}+p$ cluster model space. We find that the low-energy astrophysical S factor is linearly correlated with the quadrupole moment of ^{7}Be (Fig. 2a). A range of parameters is found where the most important ^{8}B, ^{7}Be and ^{7}Li properties are reproduced simultaneously; the corresponding S factor at zero energy is $25 - 26.5$ eVb.

Our second model [4] describes the $^{7}\text{Be}(p,\gamma)^{8}\text{B}$ process by assuming a local potential between a structureless ^{7}Be and p. The relationship between the Coulomb displacement energy for the $A=8$, $J=2^+$, $T=1$ state and the low-energy astrophysical S factor for the $^{7}\text{Be}(p,\gamma)^{8}\text{B}$ reaction is studied. The displacement energy is interpreted in a particle-hole model. The dependence of the particle displacement energy on the potential well geometry is investigated and is used to relate the particle displacement energy to the rms radius and the asymptotic normalization of the valence proton wave function in ^{8}B. We find that the theoretical Coulomb displacement energy strongly constrains the valence-proton density, and thus the asymptotic normalization, in the external region (Fig. 2a). The asymptotic normalization is used to calculate S_{17}. The model predicts S_{17} to be 24.5 ± 2.9 eVb at zero energy.

The energy dependence of the S factor is also studied [5] with the aim to understand the apparent disagreement between the predictions of the microscopic
Fig. 3. Astrophysical S factor for the 7Be$(p, \gamma)^8$B reaction [5]. The symbols show the various experimental data. The solid and long-dashed lines are the $E1$ components of the S factors in the eight-body model of [3] with and without antisymmetrization in the electromagnetic transition matrix, respectively. The short-dashed line is the result of a typical potential model.

It is found that off-shell effects, like antisymmetrization and core-excitation and deformation, significantly influence the energy dependence of the S factor. The proper treatment of these effects results in a virtually flat $E1$ component of the S factor at $E_{cm} = 0.3 - 1.5$ MeV in the eight-body model (Fig. 3). Off-shell effects can cause 15–20% changes in the value of $S_{17}(0)$ extrapolated from high-energy ($E_{cm} > 0.7$ MeV) data.

3. Conclusion

The zero-energy S factors, predicted by our models, are slightly higher than but compatible with $S_{17}(0) = 22.4 \pm 2.1$ eVb, used in standard solar models [1].

This work was performed under the auspices of the U.S. Department of Energy, and was also supported by ÓTKA Grant F019701.

References