Calculated minimum critical masses of {sup 239}Pu homogeneously mixed with polyethylene moderator

PDF Version Also Available for Download.

Description

The minimum critical masses of Plutonium 239 in a polyethylene moderator were calculated as a function of plutonium density for several polyethylene densities (various void fractions). This study has applications for solid transuranic (TRU) waste and for plutonium scrap dissolving operations where polyethylene bags may be present within the cans to be dissolved. Polyethylene is usually present in TRU waste as a result of glovebox bagout operations and as liners in 55 gallon drums. The methodology utilized the SCALE driver CSAS1X. MCNP4A with ENDF/B-V was also used as an independent check due to the lack of critical experiments for polyethylene ... continued below

Physical Description

6 p.

Creation Information

Gundy, L.M. & Goslen, A.Q. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The minimum critical masses of Plutonium 239 in a polyethylene moderator were calculated as a function of plutonium density for several polyethylene densities (various void fractions). This study has applications for solid transuranic (TRU) waste and for plutonium scrap dissolving operations where polyethylene bags may be present within the cans to be dissolved. Polyethylene is usually present in TRU waste as a result of glovebox bagout operations and as liners in 55 gallon drums. The methodology utilized the SCALE driver CSAS1X. MCNP4A with ENDF/B-V was also used as an independent check due to the lack of critical experiments for polyethylene moderator. For TRU solid waste, tests with 55 gallon drums indicate that polyethylene bagging cannot be tightly stuffed to a volume fraction greater than 15.5%. To allow for settling, calculations were conducted for 20% and 50% polyethylene volume fractions as well as for full density for comparison. The effects of 10% concrete or steel mixed with 20% polyethylene were also evaluated. Since water egress into underground solid waste containers would be possible, additional calculations evaluated critical masses of water in polyethylene moderator. Calculated critical masses for the various moderators were determined for a range of plutonium concentrations. For full density polyethylene, the minimum critical plutonium mass is about 345 grams (at 30 grams per liter) versus 510 for water. Added concrete substantially decreases the critical mass, and added steel substantially increases the critical mass. This study indicates that in some situations the minimum critical plutonium mass in polyethylene can be less than that of metal in water (about 510 grams). TRU waste fissile limits are usually based on safe masses determined from plutonium in water so that this result has obvious implications on criticality safety. 1 fig.

Physical Description

6 p.

Notes

INIS; OSTI as DE97060116

Source

  • ARS `97: American Nuclear Society (ANS) international meeting on advanced reactors safety, Orlando, FL (United States), 1-5 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97060116
  • Report No.: WSRC-MS--96-0730
  • Report No.: CONF-970607--38
  • Grant Number: AC09-89SR18035
  • Office of Scientific & Technical Information Report Number: 525008
  • Archival Resource Key: ark:/67531/metadc690744

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 9, 2016, 7:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 20

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gundy, L.M. & Goslen, A.Q. Calculated minimum critical masses of {sup 239}Pu homogeneously mixed with polyethylene moderator, article, June 1, 1997; Aiken, South Carolina. (digital.library.unt.edu/ark:/67531/metadc690744/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.