Tune control in the Fermilab Main Injector

PDF Version Also Available for Download.

Description

We describe methods used to measure and control tunes in the Fermilab Main Injector (FMI). Emphasis is given to software implementation of the operator interface, to the front-end embedded computer system, and handling of hysteresis of main dipole and quadrupole magnets. Techniques are developed to permit control of tune of the Main Injector through several acceleration cycles: from 8.9 GeV/c to 120 GeV/c, from 8.9 GeV/c to 150 GeV/c, and from 150 GeV/c to 8.9 GeV/c. Systems which automate the complex interactions between tune measurement and the variety of ramping options are described. Some results of tune measurements and their ... continued below

Physical Description

97 Kilobytes

Creation Information

Wu, G.; Brown, B. C.; Capista, D. P.; Flora, R. H.; Johnson, D. E. & Martin, K. S. April 16, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We describe methods used to measure and control tunes in the Fermilab Main Injector (FMI). Emphasis is given to software implementation of the operator interface, to the front-end embedded computer system, and handling of hysteresis of main dipole and quadrupole magnets. Techniques are developed to permit control of tune of the Main Injector through several acceleration cycles: from 8.9 GeV/c to 120 GeV/c, from 8.9 GeV/c to 150 GeV/c, and from 150 GeV/c to 8.9 GeV/c. Systems which automate the complex interactions between tune measurement and the variety of ramping options are described. Some results of tune measurements and their comparison with the design model are presented.

Physical Description

97 Kilobytes

Source

  • Particle Accelerator Conference, PAC99, New York, New York, March 29-April 2, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00005800
  • Report No.: FERMILAB-Conf-99/073
  • Grant Number: NONE
  • Office of Scientific & Technical Information Report Number: 5800
  • Archival Resource Key: ark:/67531/metadc690717

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 16, 1999

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 18, 2016, 3:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, G.; Brown, B. C.; Capista, D. P.; Flora, R. H.; Johnson, D. E. & Martin, K. S. Tune control in the Fermilab Main Injector, article, April 16, 1999; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc690717/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.