An Assessment of Ore Waste and Dilution Resulting From Buffer/Choke Blasting in Surface Gold Mines

PDF Version Also Available for Download.

Description

A discrete element computer program named DMC{underscore}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece {ampersand} Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions (2-D). DMC{underscore}BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Buffer Choke blasting is commonly used in surface gold mines to break the rock and dilate it sufficiently for ease of digging, with the assumption of insignificant horizontal movement. The blast designs usually call for relatively shallow holes benches ({lt} 11 … continued below

Physical Description

12 p.

Creation Information

Preece, Dale S.; Chung, Stephen H. & Tidman, J. Paul December 31, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 262 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A discrete element computer program named DMC{underscore}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece {ampersand} Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions (2-D). DMC{underscore}BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Buffer Choke blasting is commonly used in surface gold mines to break the rock and dilate it sufficiently for ease of digging, with the assumption of insignificant horizontal movement. The blast designs usually call for relatively shallow holes benches ({lt} 11 m) with small blastholes (approx. 165 mm), small burdens and spacings ({lt}5 m), often with 50% or more of the hole stemmed. Control of blast-induced horizontal movement is desired because the ore is assayed in place from the blasthole drill cuttings and digging polygons of ore and waste are laid out before the blast. Horizontal movement at the ore waste boundary can result in dilution of the ore or loss of ore with the waste. The discrete element computer program DMC{underscore}BLAST has been employed to study spatial variation of horizontal rock motion during buffer choke blasting. Patterns of rock motion can be recognized from the discrete element simulations that would be difficult or impossible to recognize in the field (Preece, Tidman and Chung, 1997). Techniques have been developed to calculate ore waste and dilution from the horizontal movement predicted by DMC{underscore}BLAST. Four DMC{underscore}BLAST simulations of buffer blasting have been performed. The blasts are identical except that the burden and spacing are systematically varied which also changes the powder factor. Predictions of ore waste or dilution are made for each burden in the blast, assuming no horizontal movement, to illustrate the spatial variation observed.

Physical Description

12 p.

Notes

OSTI as DE98001366

Source

  • 24. International Society of Explosives Engineers (ISEE) annual conference on explosives and blasting technique, New Orleans, LA (United States), 8-11 Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001366
  • Report No.: SAND--97-2957C
  • Report No.: CONF-980210--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 622487
  • Archival Resource Key: ark:/67531/metadc690677

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • July 6, 2022, 3:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 262

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Preece, Dale S.; Chung, Stephen H. & Tidman, J. Paul. An Assessment of Ore Waste and Dilution Resulting From Buffer/Choke Blasting in Surface Gold Mines, article, December 31, 1997; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc690677/: accessed May 17, 2025), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen