Test of DEP hybrid photodiodes

PDF Version Also Available for Download.

Description

The goal of the measurement was to study some parameters of DEP HYBRID PHOTODIODES (HPD), and the check its performance for CMS calorimetry at LHC. The principal of the HPD operation is described. The schematic view of the HPD. The HPD is vacuum photo device composed of photocathode (PC) and a silicon PIN diode (Si) as multiplication system in a very close proximity geometry. The distance between PC and Si is of the order of several mm and has an electric field < 10 kV. The photoelectron emited by the photocathode multiply by a factor of several thousand in the ... continued below

Physical Description

39 p.

Creation Information

Baumbaugh, A.; Binkley, M. & Elias, J. August 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of the measurement was to study some parameters of DEP HYBRID PHOTODIODES (HPD), and the check its performance for CMS calorimetry at LHC. The principal of the HPD operation is described. The schematic view of the HPD. The HPD is vacuum photo device composed of photocathode (PC) and a silicon PIN diode (Si) as multiplication system in a very close proximity geometry. The distance between PC and Si is of the order of several mm and has an electric field < 10 kV. The photoelectron emited by the photocathode multiply by a factor of several thousand in the silicon and the charge is collected on the HPD`s anode. Several types of HPD`s were tested. There was a single channel HPD, called {open_quotes}E-type{close_quotes} with p-side of the silicon facing the HPD`s photocathode and two multipixel HPD (DEP) namely a 25 pixel HPD and a 7 pixel HPD. Both were of {open_quotes}T-type{close_quotes} structure with n-side of silicon facing the photocathode.

Physical Description

39 p.

Notes

INIS; OSTI as DE97054297

Source

  • Other Information: PBD: Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97054297
  • Report No.: FNAL-TM--2013
  • Grant Number: AC02-76CH03000
  • DOI: 10.2172/576108 | External Link
  • Office of Scientific & Technical Information Report Number: 576108
  • Archival Resource Key: ark:/67531/metadc690664

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 1, 2016, 5:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Baumbaugh, A.; Binkley, M. & Elias, J. Test of DEP hybrid photodiodes, report, August 1, 1997; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc690664/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.