Deriving particle distributions from in-line Fraunhofer holographic data

PDF Version Also Available for Download.

Description

Holographic data are acquired during hydrodynamic experiments at the Pegasus Pulsed Power Facility at the Los Alamos National Laboratory. These experiments produce a fine spray of fast-moving particles. Snapshots of the spray are captured using in-line Fraunhofer holographic techniques. Roughly one cubic centimeter is recorded by the hologram. Minimum detectable particle size in the data extends down to 2 microns. In a holography reconstruction system, a laser illuminates the hologram as it rests in a three axis actuator, recreating the snapshot of the experiment. A computer guides the actuators through an orderly sequence programmed by the user. At selected intervals, ... continued below

Physical Description

14 p.

Creation Information

Tunnell, T.W.; Malone, R.M.; Fredericson, R.H.; DeLanoy, A.D.; Johnson, D.E.; Ciarcia, C.A. et al. July 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Holographic data are acquired during hydrodynamic experiments at the Pegasus Pulsed Power Facility at the Los Alamos National Laboratory. These experiments produce a fine spray of fast-moving particles. Snapshots of the spray are captured using in-line Fraunhofer holographic techniques. Roughly one cubic centimeter is recorded by the hologram. Minimum detectable particle size in the data extends down to 2 microns. In a holography reconstruction system, a laser illuminates the hologram as it rests in a three axis actuator, recreating the snapshot of the experiment. A computer guides the actuators through an orderly sequence programmed by the user. At selected intervals, slices of this volume are captured and digitized with a CCD camera. Intermittent on-line processing of the image data and computer control of the camera functions optimizes statistics of the acquired image data for off-line processing. Tens of thousands of individual data frames (30 to 40 gigabytes of data) are required to recreate a digital representation of the snapshot. Throughput of the reduction system is 550 megabytes per hour (MB/hr). Objects and associated features from the data are subsequently extracted during off-line processing. Discrimination and correlation tests reject noise, eliminate multiple particles, and build an error model to estimate performance. Objects surviving these tests are classified as particles. The particle distributions are derived from the data base formed by these particles, their locations and features. Throughput of the off-line processing exceeds 500 MB/hr. This paper describes the reduction system, outlines the off-line processing procedure, summarizes the discrimination and correlation tests, and reports numerical results for a sample data set.

Physical Description

14 p.

Notes

OSTI as DE97008670

Source

  • Annual meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA (United States), 27 Jul - 1 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008670
  • Report No.: LA-UR--97-2340
  • Report No.: DOE/NV/11718--139;CONF-970706--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 627359
  • Archival Resource Key: ark:/67531/metadc690617

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 1:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tunnell, T.W.; Malone, R.M.; Fredericson, R.H.; DeLanoy, A.D.; Johnson, D.E.; Ciarcia, C.A. et al. Deriving particle distributions from in-line Fraunhofer holographic data, article, July 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc690617/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.