Computational chemistry in Argonne`s Reactor Analysis Division

PDF Version Also Available for Download.

Description

Roughly 3 years ago work on Argonne`s Integral Fast Reactor ({open_quotes}IFR{close_quotes}) was terminated and at that time, ANL funding was redirected to a number of alternative programs. One such alternative was waste management and, since disposal of spent fuel from ANL`s EBR-II reactor presents some special problems, this seemed an appropriate area for ANL work. Methods for the treatment and disposal of spent fuel (particularly from EBR-II but also from other sources) are now under very active investigation at ANL. The very large waste form development program is mainly experimental at this point, but within the Reactor Analysis ({open_quotes}RA{close_quotes}) Division ... continued below

Physical Description

10 p.

Creation Information

Gelbard, E.; Agrawal, R. & Fanning, T. August 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Roughly 3 years ago work on Argonne`s Integral Fast Reactor ({open_quotes}IFR{close_quotes}) was terminated and at that time, ANL funding was redirected to a number of alternative programs. One such alternative was waste management and, since disposal of spent fuel from ANL`s EBR-II reactor presents some special problems, this seemed an appropriate area for ANL work. Methods for the treatment and disposal of spent fuel (particularly from EBR-II but also from other sources) are now under very active investigation at ANL. The very large waste form development program is mainly experimental at this point, but within the Reactor Analysis ({open_quotes}RA{close_quotes}) Division a small computational chemistry program is underway, designed to supplement the experimental program. One of the most popular proposals for the treatment of much of our high-level wastes is vitrification. As noted below, this approach has serious drawbacks for EBR-II spent fuel. ANL has proposed, instead, that spent fuel first be pretreated by a special metallurgical process which produces, as waste, chloride salts of the various fission products; these salts would then be adsorbed in zeolite A, which is subsequently bonded with glass to produce a waste form suitable for disposal. So far it has been the main mission of RA`s computational chemistry program to study the process by which leaching occurs when the glass-bonded zeolite waste form is exposed to water. It is the purpose of this paper to describe RA`s computational chemistry program, to discuss the computational techniques involved in such a program, and in general to familiarize the M. and C. Division with a computational area which is probably unfamiliar to most of its member. 11 refs., 2 figs.

Physical Description

10 p.

Notes

OSTI as DE97053463

Source

  • Joint international conference on mathematical methods and supercomputing in nuclear applications, Saratoga Springs, NY (United States), 6-10 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97053463
  • Report No.: ANL/RA/CP--93562
  • Report No.: CONF-971005--
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 544719
  • Archival Resource Key: ark:/67531/metadc690601

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 20, 2016, 1:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gelbard, E.; Agrawal, R. & Fanning, T. Computational chemistry in Argonne`s Reactor Analysis Division, article, August 1, 1997; Illinois. (digital.library.unt.edu/ark:/67531/metadc690601/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.