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ABSTRACT

Over two hundred fifty mechanical experiments have been run on samples
of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah
Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect
data for an initial evaluation of mechanical (elastic and strength) properties
of the potential horizons for emplacement of commercial nuclear wastes.
The experimental conditions ranged in sample saturation from room dry to
fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from
0.1 to 5 MPa, temperature from 23 to 200°C, and strain rate from 10~7 to
10~2 s—1, These test data have been analyzed for variations in elastic and
strength properties with changes in test conditions, and to study the effects
of bulk-rock characteristics on mechanical properties. In addition to the
site-specific data on Yucca Mountain tuff, mechanical test results on silicic
tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data
both overlap and augment the Yucca Mountain tuff data, allowing more
definitive conclusions to be reached, as well as providing data at some test

conditions not covered by the site-specific tests.
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Introduction

Yucca Mountain (YM), near the southwest margin of the Nevada Test Site (NTS)
in southern Nevada,; is being evaluated as a potential site for underground storage of
nuclear wastes. Yucca Mountain primarily consists of layered volcanic tuff 8. Samples
from four stratigraphic units have been tested for physical, thermal and mechani-
cal properties as part of the Nevada Nuclear Waste Storage Investigations (NNWSI)
Project, administered by the Nevada Operations Office of the U. S. Department of
Energy. The four units, in order of decreasing stratigraphic position (increasing depth
and age), are as follows: 1. 'Topopah Spring Member of the Paintbrush Tuff ("I'pt), 2.
Tuffaceous beds of Calico Hills (Tc), 3. Bullfrog Member of the Crater Flat Tuff (Tcfb),
and 4. Tram Member of the Crater Flat Tuff (Tcft). A complete stratigraphic column
for Yucca Mountain at drill hole USW G-1 is shown in Figure 1.

Four data reports have presented mechanical data from samples of Topopah Spring
18 Calico Hills !, Bullfrog '3, and Tram '* tuffs. In addition to these test series, other
mechanical experiments have also been reported 8919:18:20 o samples from Yucca
Mountain. A compilation of all compressional test conditions and results from the above
referenced reports is contained in Appendix 1. All of the above data will be discussed
in this report in order to summarize the present state of knowledge of the mechanical
properties of tuffs from Yucca Mountain. ’

Supplementary to the site-specific data, many data have been collected on similar
silicic tuff material from Rainier Mesa (RM) at the Nevada Test Site. Olsson and
Jones 'Y and Wawersik “° have deformed tuff specimens at various water contents, .
temperatures and rates. These data will also be analyzed here.

All symbols and abbreviations used in this report can be found in Tables 1 and 2.
Within these tables the terms are defined, conventions explained, and standard unlts
assigned.

Test Procedures and Sample Preparation

While all of the above mentioned data will be presented in summary, individual
“test curves will not be presented. These results, as well as detailed discussions of sample
treatment, equipment, experimental procedures and calibrations, are available in the
individual data reports.

The large majority of samples tested were right circular cylinders with diameters of
2.54 cm and a length-to-diameter ratio of approximately 2:1. This specimen size allowed



the number of test samples to be maximized, since the amount of raw core material was
limited in amount and size (approximately 6 cm in diameter). For the large majority
of samples, the grain and flaw (pore) sizes were less than one-tenth of the sample
diameter; thus, individual grain and pore effects on the bulk mechanical properties
~ were minimized. The 2:1 length-to-diameter ratio reduces end effects (i.e., sample-

loading piston interaction), which are much more of a problem at lower ratios, and
misalignment (i.e., the production of bending moments), which occurs more frequently
when higher ratios are used. Calibrations of force and displacement gages prior to
each experimental series have shown that errors in these measurements are in all cases
less than three percent. Any major differences in mechanical properties for adjacent
tuff samples are, therefore, a result of sample variability (mineralogy, porosity, grain
density, etc) or testing procedures. Since the experimental techniques were designed to
minimize alignment and other problems, the data scatter is predominantly a result of
sample variability.

Elastic Properties

Young's modulus and Poisson’s ratio data have been collected in several experimen-
tal studies 8910,13,14,15,18,18,20 ), ¢,)ffs from Yucca Mountain. A statistical analysis 7
of these elastic constants as a function of effective porosity, grain density and zeolitiza-
tion has been done on unconfined test data using samples of Calico Hills, Bullfrog and
Tram tuffs 813141518 ' AJ] of the mechanical experiments were run on fully saturated
samples at atmospheric pressure (i.e., unconfined), room temperature (23°C) and a
10~° s™! nominal strain rate. The data were fit by the following models:

MODEL 1: LogY = By + By Log X

MODEL 2 : LogY = Bo + B: Log X1 + B2 Log X2,

where Log is a common logarithm to the base 10; X is effective porosity or grain density;
X is effective porosity; X is grain density; Y is Young's modulus or Poisson’s ratio;
and By, B1, B2 are fitting parameters.

The results of the analysis are summarized in Tables 3 and 4. Six sets of fitting
parameters are given by combining the results obtained from tests performed at Sandia
National Laboratories - Albuquerque (SNLA) 8131415 354 Terra Tek Inc. (TT) '® to-
gether with three data sets: A. all tuff data, B. zeolitized tuff (i.e., p, < 2.52 Mg/m?)
data and C. non-zeolitized tuff (i.e., p, > 2.52 Mg/m®) data. Only the statistically
significant fits (i.e., an @ < .05) of the model to the data have been listed.



Using grain density as the basis for dividing the tuffs into zeolitized and non-
zeolitized is not a rigorous, unique criteria. This material property was chosen since
zeolites (hydrous silicates) tend to lower the average grain density of a silicic tuff.
Furthermore, all of the test samples (considered in this statistical analysis) with a
zeolite content of greater than 5 percent (by weight) were found to have grain densities
of less than 2.52 Mg/m>.

The fits were calculated using an effective porosity equal to the volume of clay
(montmorillonite) material in addition to the actual porosity. This action was taken
after careful analysis of the data in an effort to increase confidence in the predictive
capability of the models. Since clay is a relatively weak, compliant material, considering
its volume in an effective porosity is deemed appropriate.

A statistical comparison '? of the SNLA data and the TT data has been performed
due to major differences in the calculated fitting parameters from the two data sets.
These results are summarized in Table 5. The average differences for paired data (i.e.,
data from samples at the same depth) are given, with a positive difference indicating
higher SNLA data values. The two labs are beginning discussions of possible explana-
tions for the differences; however, since the reasons are not clear at this time, the results
from analyses of each of the data sets are presented, but only the SNLA results will
be discussed here.

Statistically, Young's modulus is significantly fit by using both effective porosity
and grain density (Model 2) with all of the data. This result does not appear to have any
real significance, however, since the fitting constant for grain density (B2) is negative.
Intuitively, this is not realistic because grain density should be directly related to
Young’s modulus. This is shown by the Model 1 fit of Young's modulus to grain density,
and also graphically in Figure 2, with a general trend of increasing Young’s modulus
with grain density. As a result, the fits of all data to effective porosity (Figure 3) or
of a split of the data, on the basis of zeolitization, fit to effective porosity (Figures 4A
and 4B) appear to be the best predictive tools available.

Poisson’s ratio appears graphically to be neither related to effective porosity (Figure
5), nor to grain density (Figure 8). A statistically significant fit was made, however,
to Model 2 with both bulk-rock properties.

Unconfined Strength

Ultimate stress values have been determined for tuff samples from Yucca Mountain
under a wide range of experimental conditions !:8-9:10:13,14,15,18,18,20 T} 16 g 3 broad
data base of unconfined compressive test results which has allowed a statistical analysis
to be run on the fit of strength to bulk-rock properties with a power-law model. The
only tensile data available are from Brazilian (indirect-tensile) tests, which have been
linearly fit to porosity. These analyses will be discussed in the following subsections.



Compressive Strength

The same sets of unconfined, room temperature, constant strain rate experiments
8,13,14,15,18 4151y zed in the elastic properties section were also studied !7 for the effects
of effective porosity, grain density and zeolitization on unconfined compressive strength
(i.e., Co). Both the models (1 and 2) and the data sets (A, B and C) are identical to
those described in the previous topic. The resultant model parameters are given in

Table 6.

As mentioned in the Elastic Properties section, an effective porosity, equal to
the matrix porosity plus the volume of clay, is being used. Figures 7 and 8 are log-
log plots of ultimate stress (strength) versus porosity and versus effective porosity,
respectively. These graphs illustrate the more distinct trend when effective porosity,
instead of porosity alone, is used. As a result, effective porosity appears to be a good
indicator of strength, especially when the data is divided on the basis of zeolitization
(Figures 9A and 9B). The addition of grain density in Model 2 results in unrealistic fits
(i.e., a negative B2 parameter for data set A), in statistically insignificant fits to the
model (data set B), or in very minor increases in the indices of determination (data set
C). Figure 10 is a log-log plot of strength versus grain density, showing the large data
scatter, with an indistinct trend of strength directly proportional to grain density, as
would be expected.

Figures 11 and 12 are graphs of axial strain at failure versus effective porosity and
versus grain density, respectively. Graphically, ultimate strain appears to be insensitive
to these bulk-rock properties.

A statistical comparison 7 of the SNLA and TT data has been performed for the
ultimate strength and failure strain values. These results are presented in Table 7. As
in Table 5, positive average differences indicate higher SNLA data values. '

Tensile Strength

Indirect, Brazilian test, measurements of the tensile strengths of samples from all
four Yucca Mountain tuff units have been made at Los Alamos National Laboratory *.
The relationskip between unconfined tensile strength (To) and porosity is approximately
linear (see Figure 13). This linear relationship can be used for the first-order approxima-
tions of tensile strength of any Yucca Mountain tuff sample with determined porosity.

Effects of Water

The effects of water saturation on silicic tuff were initially studied on samples of
Grouse Canyon tuff (Tbrg) from Rainier Mesa '°. A total of eighteen water-saturated



and oven-dried samples of Grouse Canyon welded tuff were deformed at atmospheric
pressure; room temperature; and nominal strain rates of 1078, 10~* and 1072 s~
Results are tabulated in Table 8 and graphically presented in Figure 14. The data
revealed, at each strain rate, saturated specimen strengths were an average of 30%
lower than the corresponding dry sample strengths. As explained by Olsson and Jones

: “The fact that the trend lines drawn through the data are parallel suggests that
the water effect is primarily chemical”, and not mechanical.

Four experiments were run on samples of Calico Hills Tuff !® at essentially the
same test conditions (unconfined, 23°C, 10™% s™!). These results are also presented
in Table 8. In this study, two test specimens were fully saturated and two were room-
dry. Similar to the Grouse Canyon study, the average strength for the water-saturated
samples was approximately 23% less than for the room-dry samples.

Effects of Pressure

Confining Pressure

Thirteen sets of tests on intact samples from drill holes USW G-1 and UE-
25a#fu 1 have been run to examine the effects of confining pressure on failure strength
¥:10.15,18 The experimental data were fit by linear regression of ultimate stress oun to
confining pressure and then transformed to the Coulomb equation in the same manner
as described by Olsson and Jones '°. The Coulomb failure criteria is as follows :

7 = 70 + on(tan ¢),

where 7 is shear stress, 7o is cohesion, o, is normal stress, and ¢ is the angle of internal
friction. These results are summarized in Table 9 and plotted in Figures 15A-15M.

Five of the test sets were run with room-dry samples. These data illustrate a
relatively small range of cohesion values (10.2-17.5 MPa) and a large range of friction
angles (25.0-67.0°). Three sets of Calico Hills samples were deformed fully saturated,
but with no exit for pore fluid during the course of the tests (i.e. “undrained”). The
resulting ranges, and magnitudes, of Coulomb parameters are quite small, with cohesion
and friction angle ranging from 9.7 to 13.2 MPa and 4.8 to 7.8°, respectively. The three
remaining test series were performed saturated and drained, with two sets at room
temperature and one set at 200°C. As a result, no trends can be observed due to the
wide variations in test conditions.
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Figures 16 and 17 are plots of cohesion and angle of internal friction, respectively,
against effective porosity. Even with the wide variations in experimental conditions,
the general inverse relationship between each of the Coulomb parameters and effective
porosity is quite evident.

Pore Pressure

To date, only one series of tests has investigated the effects of pore fluid pressure
on Yucca Mountain tuffs. Olsson ® reported two test sets on Bullfrog samples deformed
in compression at effective pressures of 5, 12.5 and 20.7 MPa,; a temperature of 200°C;
and a nominal strain rate of 10™* s™!. Four experiments were run on dry samples and
three on saturated specimens with pore pressures of 5, 5 and 3.4 MPa. Considering the
expected strength decrease in the saturated sample test data (i.e., water-weakening),
the curve trends and ultimate strengths from tests run at the same effective pressure
were very similar to each other. As a result, it is assumed that the concept of effective
stress (i.e., P. = P, - P,) holds for tuff, as it has been shown by Handin and others 2
to hold for many other porous rock types (e.g. sandstone, porous limestone, etc.).

Effects of Temperature

Three studies ®'%2° refer to experimental data on tuff at elevated temperaturcs
The mechanical test results are summarized in Table 10.

In general, ultimate strength is inversely related to temperature, as would be
expected. More specifically, the higher porosity (> 25%) ash fall tuffs decrease in
strength 30 to 40% when the experimental temperature is increased from 23 to 200°C.
One experimental series 2%, however, found no difference in strength between two welded
tuff samples (approximately 10% porosity) from Rainier Mesa deformed at 23 and
200°C.

Effects of Rate

Tests have been run at a range of laboratory strain rates (10”7 to 1072 s™!) to
study the effects of changes in rate on mechanical properties. The data from three
series of experiments on site-specific tuffs 1#15:1® are listed in Table 11 and presented
in Figures 18A-18C, while the results from two series on tuffs from Rainier Mesa ° are

listed in Table 8 and presented in Figure 14.
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The Tram (Figure 18A) and two Grouse Canyon (Figure 14) test series resulted in
average strength decreases of approximately seven percent per decade decrease in strain
rate. The decrease was somewhat less (about four percent per decade) for the Calico
Hills (Figure 18B) tests. The Topopah Spring (Figure 18C) sequence of experiments
resulted in no definitive rate effect on strength. It is believed that this result was
due to physical property and mineralogical variability of the samples tested. The test
specimens were taken from USW G-1 core over the depth range 371.3-390.0 m, and
therefore probably had a wide range of physical and mineralogical characteristics,
resulting in the large data scatter.

Estimate of Average and Limit Mechanical Properties

In order to aid in the numerical modeling of the Yucca Mountain tuff response to
thermal and mechanical loading, the tuff sequence has been divided into nine thermal-
mechanical zones ® (see Figure 19). The zone boundaries were defined to reflect changes
in mineralogical and bulk-rock properties (hence, significant changes in the mechanical
properties) and are not always the same as the formal (geologic) stratigraphic divisions.

Lists of the input mechanical properties for each zone, and for the average and
limit cases, are given in Tables 12 and 13. The elastic moduli and strength values
were calculated using the parameters from previously discussed fits to the existing
data, combined with the known average and limit bulk-rock properties "2, The limit
physical properties were defined as “worst-case” values, at two standard deviations
below the mean. The angle of internal friction values were determined by using an
estimated linear relationship with effective porosity, then these results, together with
the unconfined compressive strength values, were used to back calculate the appropriate
cohesion parameters. As a double check, the calculated cohesions were compared with
the experimentally determined values and found to be reasonable.

Summary

Over two hundred and fifty mechanical experiments on tuff from Yucca Mountain
have been performed. Other deformational tests have also been run on similar silicic
tuff from Rainier Mesa. These data have been presented and analyzed for variations
_in elastic and strength properties with changes in porosity, effective porosity, grain
density, zeolitization, water saturation, confining pressure, pore pressure, temperature,
and strain rate.

A power-law model has been used to fit the elastic and strength data from un-
confined compressive tests to bulk-rock properties. The results show that effective
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porosity is the best predictor of unconfined compressive strength and Young’s modulus,
especially when the data is divided on the basis of zeolitization. For Poisson’s ratio, a
combination of effective porosity and grain density fits the data best. In addition, the
unconfined tensile strength data (from Brazilian tests) has been linearly fit to porosity
as a first-order predictive tool.

Water saturated samples were found to be 23 and 30% weaker than room-dry and
oven-dry samples, respectively. This water-weakening effect is an expected result for all
silicate rocks, and in this case appears to be chemical, and not mechanical, in nature.

The pressure test series run to date were fit by the Coulomb failure criteria. These
results, although obtained under a wide variety of experimental conditions, have shown
that both the angle of internal friction and cohasion are inversely related to effective
porosity. One sequence of experiments has indicated that the law of effective stress
holds for the porous tuffs.

The strengths of the higher porosity tuffs are 30 to 40% lower at 200°C than at
room temperature (about 23°C). The strengths of the lower porosity tuffs, however,
may be affected very little by the same temperature variation.

Under normal laboratory axial strain rates (1077 to 1072 s™!), an average decrease
in ultimate strength of four to seven percent per decade decrease in strain rate has been
observed.
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Table 1. Symbols, Conventions and Units

SYMBOL

oy ,02,03

€1, €2, €3

(Ao)y

(e1)u

LN

E
v

r = 79 + on(tang)

7
To
On
¢

tan ¢

Py

DEFINITION

Principal stresses; compressive stresses
are positive :

Principal strains; compressive strains
are positive :

Confining pressure
Pore pressure
Effective pressure (Pe = P, - Pp)

Differential stress (o) - 03 or oy - P¢)

Unconfined (uniaxial) compressive strength
Unconfined (uniaxial) tensile strength

Ultimate (maximum or peak) differential
stress

Greatest principal strain at the ultimate
differential stress :

Nominal strain rate
Temperature

Saturation of test sample (Y : fully saturated,

R : room dry , N : oven dricd)
Drained experiment (1.e., the sample was
allowed to vent pore fluids during the

experiment) (Y : yes, N : no) -

- Elastic constant : Young’s modulus

Elastic constant : Poisson’s ratio

Coulomb failure criteria

Shear stress :
Cohesion (inherent shear strength)
Normal stress ,

Angle of internal friction
Coefficient of internal friction

Effective porosity (porosity + clay volume)
Average grain density

UNITS

MPa

%

MPa
MPa
MPa

MPa

MPa
MPea

‘MPa

%

GPa

MPa
MPa
MPa

%
Mg/m?3



BREVIA’

SNLA
'1\'[\

NNWSI

NTS

RM
Thbrg

Y™M
Tpe
Tpt
Te
Tcfp
Tefb
Teft

Gl
Al

Model 1
Model 2

X
X1
Xz
Y
By , B, , B

Data set A
Data set B
Data sct C

d
F.S.

Se
R2

ON

Table 2. Abbreviations

EFINITIO

Sandia National Laboratories - Albuquerque
Terra Tek, Inc.

Nevada Nuclear Waste Storage Investigations

Nevada Test Site

Rainier Mesa, Nevada Test Site
Grouse Canyon Member of the Belted Range Tuff

Yucca Mountain, Nevada Test Site

Tiva Canyon Member of the Paintbrush Tuff
Topopah Spring Member of the Paintbrush Tuff
Tuffaceous beds of Calico Hills

Prow Pass Member of the Crater Flat Tuff
Bullfrog Member of the Crater Flat Tuff

Tram Member of the Crater Flat Tuff

Drill hole USW G-1 at Yucca Mountain
Drill hole UE-25a#1 at Yucca Mountain

Log Y == Bg + B; Log X
Log Y = By + Bj Log X; + B2 Log X2

Effective porosity or Grain density
Effective porosity

Grain density .
Young’s modulus or Poisson’s ratio
Fitting parameters

All tuff samples
Zeolitized tuff samples only (p, < 2.52 My/m?3)

Non-zeolitized tuff samples only (p; > 2.52 Mg/m3)

Average difference between comparative values
Fit significance (S : significant = a < .05
NS : not significant = a > .05)
Standard Error
Index of determination

17
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Table 3. Model Fite to Young’s Modulus Data

LAB X Y DATA SET MODEL F.S. By B; B, Scof Y R?
(SNLA ; TT) (n ;-p-]) {CO E, V) (A B ; C) (:i ’ 2) (S ) NS)
SNLA n E A 1 S 3.641 -..800 - 124 .676
SNLA Py E A 1 S -.3940 2411 - 212 .056
SNLA n,py E A 2 S - 4.766 -1.949 -2.241 122 696
SNLA n E B 1 S 4375 -3.245 - 127 .708
SNLA Pg E- B 1 NS - - - - -
SNLA n, py £ B 2 NS - - - - -
SNLA n E C 1 S 4.108 -2.155 - 101 730
SNLA Py E C 1 NS - - ; ) )
SNLA n, pi E C 2 S 4652 -2.433 9.727 085 813
“TT n | A 1 S 2.648 -1.178 - 217 213
TT Py E A 1 NS - - - - .
TT 1, p, E A 2 NS - - - - -
TT n- E B 1 S 2.970 -1.347 - 178 .291
TT Pq E B 1 NS - - - . - .
TT n,p, E B 2 NS - - ’ - - - -
TT n E ol 1 S 3.799 -2.017 - 229 306
TT Py E C 1 NS. - - ; - )
TT o, p, B C 2 NS - - ) - - -
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Table 4. Model Fits to Poisson’s Ratio Data

F.S.

LAB X Y DATA SET MODEL B, B, B, S, of Y R2
(SNLA, TT) (n,p) (Co,E,v) (A,B,C) (1,2) (S, NS) :
SNLA n v A 1 NS - - - - -
SNLA oy v A 1 S -2.364 4.138 ; 176 135
SNLA n, v A 2 S -3.932 6760 5.560 169 229
SNLA n v B 1 S -2.385 1.067 3 156 291
SNLA Pe v B 1 NS } . - - ;
SNLA n, o v B 2 NS - - - - -
SNLA n v C 1 NS - - ; - )
SNLA Py v C 1 NS ] ; . ; ;
SNLA n, g, v C 2 NS - - - - -
TT n v A 1 S 1514 -7310 " 175 139
TT 0 v A 1 S -2.916 4.928 ; 172 165
TT n, o, v A 2 S -1.698 -.4724 3.641 168 212
TT 1 v B 1 S 1249 -7330 ; 182 104
TT 0s v B 1 NS - } ; - -
T 1, p, v B 2 NS ) ) ] ] .
TT 1 v e 1 NS ; ; ] ; ;
TT Py v C 1 S -5.919 12.16 ; 149 192
TT n, p, v C 2 S -6.125 -.6321 14.84 144 265
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Table 5 Comparative Statistics of SNLA-TT Elastic Mcduli Data

Variable (umits)

‘E (GPa)

14

Calico Hills

Z(FS)

181 (S)

13 (S)

Bullfrcg

7 (FS)

3.66 ()

.01 (NS)
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Table 6. Model Fits to Unconfined Compressive Strength Data

LAB X Y DATA SET MODEL F.S. By B, B, Scof Y R?
(SNLA ’ TT) (Il : Pg) (CO ’ E ’ l’) (A B B ’ C) ‘1 ’ 2) (S ’ NS)
SNLA n Co A 1 S 4.103 -1.724 - 155 953
SNLA oy Co A 1 NS - - - : .
SNLA n, py, Co A 2 S 6.096 -2.008 -3.963 147 .606
SNLA n Co B 1 S 5.728 -2.741 - 132 70
SNLA o, Co B 1 NS - - . ) ;
SNLA 2, p, Co B 9 NS ] ; . ] i
SNLA n Co C 1 S 4.579 -2.123 - 114 667
SNLA 0y Co C 1 NS . ] ; ) ;
SNLA 1, P Co C 2 S 4797 -2.435 10.94 097 766
TT n Co A 1 S 3.827 -1.510 - 167 428
TT £q Co A 1 S 1652 3.542 - 214 .061
TT - B, p, Co A 2 NS - - - - -
TT n Co B 1 4.350 -1.821 - 139 550
TT pe Co B 1 NS - - . . .
TT n, p, Co B 9 S 1.791 -1.862 6.756 128 635
TT n Co C 1 S 4.419 -1.951 - 178 .406
TT 24 Co C 1 NS i - . - )
TT n,p, Co C 2 S -7916 -2.318 13.82 162 519
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Table 7. Comparative Statistics of SNLA—TT Unconfined Compressive Strength Data -

Variable (units)

(_Aa),_. (MPa

(e1)u (%)

Calico Hills -

a(FS)

16.09 (5)

0C1 (NS)

Bulifrog

d(F.S)

3.17.(S)

~11(3)-

Tram

d(FS)

-18.62(3)

.10 (S)

All Data

d(F.S)

-7.94 (S)

.07 (S)
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Table 8. Test Results on the Effects of Changes in Water Content

Location Unit Depth P, T é S D (A0)y (61)u E v Ref
(m) (MPa) (°C) )  (YRN) (Y,N) (MPa) (%) (GPa)

. YM Te 517.6 (G1) 0 23 10—5 R Y 41.0 .58 8.12 .29 15
™ Tec 507.6 (G1) 0 23 10—5 Y 32.7 54 6.50 31 15
™ Te 517.6 (G1) 0 23 10—5 Y Y 26.2 .50 6.86 18 15
™ Tc 597.6 (G1) 0 23 103 Y Y 34.1 .42 9.52 - 15
RM Tbrg - 0 23 10—2 N Y 175 - 25.9 - 10
RM Thrg - 0 23 10—2 N Y 189 - 28.7 - 10
RM Thrg - 0 23 10—2 N . Y 177 - 28.4 - 10
RM Tbrg . 0 23 10— N Y 160 - 26.2 - 10
RM Thrg - 0 23 10—* N Y 155 - 28.5 - 10
RM . Tbrg - 0 23 10— N Y 160 - 27.4 - 10
RM Tbrg - 0 23 10—* N Y 135 - 27.4 - 10
RM Thrg - 0 23 10—8 N Y 141 - 28.3 - 10
RM Tbrg - 0 23 108 N Y 134 - 29.5 - 10
RM Thrg - -0 23 10—2 Y Y 142 - 26.1 - 10
RM Tbrg - 0 23 10—2 Y Y 114 - 22.8 - 10
RM Tbrg - 0 23 102 Y Y 118 - 23.8 - 10
RM Thrg - 0 23 10— Y Y 112 - 24.8 - 10
RM Thrg - 0 23 10— Y Y 122 - 25.3 - 10
RM Thrg - 0 23 10— Y Y 102 - 24.9 - 10
RM Tbrg - 0 23 10~ Y Y 81.1 - 25.9 - 10
RM Tbrg - 0 23 10—¢ Y Y 110 - 25.4 - 10
RM Tbrg - 0 23 198 Y Y 91.8 - 26.8 - 10
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Table 9.-Parameter Values “or the Coulomb Failure Criteria

5,10,20.7

16.5

Unit Depth (G1) Depth (Al) P, T é . s D T i Ref
(m) (m) (MPa) (°C) (s7h) (Y,R)N) " (Y,N) {MPa) (°)
Tpe - 26.7 010,20 © 23 10—* R N 28.1 68 10
Tpt . 990-351 0,10,20 23 101 R N 17.5 67. 10
Tpt 352-362 - 0,5,10 23 105 Y Y 343 23.5 16
Te 453.4 ; 10,1020 23 105 Y Y 10.2 11.1 15
Te 453.4 ) 0,10,20 23 10— Y N 10.6 7.81 15,
Tc - 454-516 0,20 23 10— R N 12.9 95 10
Te 507.6 ; 0,10 23 10—5 R N 102 32.9 15
Te 507.6 ; 0,10,20 23 10—5 Y N 13.2 +6.81 15
- Te 508.4 . 0,10 93 10—5 Y N 9.67 4.78 15
Tefp - 600-614 0,20 23 10—* R N - 32.2 37 10
. Tefb - 738-759 0,20 23 10—+ R N 12.1 43 10
Tefb 759 - . 5125207 200 10—4 Y Y . 936 19.6 9
Tefb 759 - 200 104 N Y 37.4 9

e
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Table 10. Test Results on the Effects of Changes in Temperature

Lacation Unit Depth P, T o€ S D (Ao)y {c1)u E v Ref
(m) (MPa) (°C) (s71) (Y,R,N) (Y,N) (MPa) (%) (GPa)

™ Tpt  225.2 (A1) 207 200 10—4 R Y 133 - 23.9 .15 10
™ Tefb 759 (G1) 5.0 200 10—¢ R Y 87 - 18.5 - 9
™ Tefb 759 (G1) 5.0 200 10— Y Y 70 - 13.1 - 9
™ Tefb 759 (G1} 10.0 200 10—¢ R Y 93 - 15.7 - 9
Y™ Tefb 759 (G1) 12.5 200 10—* Y Y 83 - 17.8 - 9
™M Tefb 759 (G1) 20.7 200 104 R Y 119 - 17.6 - 9
Y™ Tefb 759 (G1) 20.7 200 10— R Y 149 - 20.5 - 9
™ Tefb 759 (G1) 20.7 200 10— Y Y 86 - 13.8 - 9
RM - - 0 23 10—5 R Y 36.3 48 8.83 - 20
RM - - 0 200 10—5 R Y 22.6 .38 6.76 - 20
RM - - 10.3 23 10—5 R Y 53.5 1.05 8.83 18 20
RM - - 10.3 23 10—3 R Y 519 1.06 8.76 20 20
RM - - 10.3 200 10~° R Y 35.6 98 6.76 - 20
RM Thrg - 0 23 10—5 R Y 120.7 - - - 20
RM Thrg - 0 200 10—° R Y 115.4 - - - 20
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Table 11. Test Results on the Effects of Changes in Strain Rate

Location Unit  Depth(Gl) P, T é S b (A0), 1)y E 7 Ref
(m) (MPa) (°C) s7Y)  (Y,RN) (Y,N) (MPa) (%) (GPa)

™ Tpt 372.5 0 23 102 Y Y 157.2 .48 29.2 31 16
™ Tpt 384.8 0 23 102 Y Y 149.7 49 36.6 - 16
™ Tpt 372.5 ] - 23 10—4 Y Y 133.8 57 27.7 - 16
™ Tpt 373.0 Q 23 10—4 Y Y 157.2 46 37.5 25 16
™ Tpt 3715 0 23 10—¢ Y Y 1766 51 408 95 16
™ Tpt 373.0 0 23 10— Y Y 1156.6 AT 35.3 21 16
YM . Tpt 390.C 0 23 10—¢ Y Y 44.9 A1 22.9 27 16
™ Te 508.4 0 23 10—3 Y Y 24.7 61 5.41 33 15.
™ Te 508.4 0 23 10—3 Y Y 23.4 - .58 5.45 - 15
™ Tec 5084 - 0 23 10—3 Y Y 95.4 .57 6.15 .36 " 15
™ Te 508.4 0 23 10—5 Y Y 16.7 43 4.92 18 15
Y™ Te 508.4 0 23 10~7 Y Y 21.5 .55 7.86 21 15
™ Te 508.4 0 23 10~7 Y Y 19.9 51 7.03 .22 15
™ Teft 976.2 0 23 10—2 Y Y 31.1 52 6.63 - 14
™ Teft 976.2: 0 23 102 Y Y 24.4 .50 5.17 - 14
™ Teft 976.2 0 23 10— Y Y 25.3 .50 6.42 - 14
Y™ Teft 976.2 0 23 10— Y Y 22.1 32 8.76 - 14 - -

. YM Teft 976.2 0 23 10— - Y Y 32,6 44 8.97 .09 14
Y™ Teft 1976.2 0 23 10—% Y Y 14.5 31 7.04 30 14
Y™ Teft 976.2 0. 23 10—¢ Y Y 26.5 .50 8.26 14 14
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Table 12. Average-Case Mechanical Properties for each the of the Yucca Mountain Thermal/Mechanical Zones

*

Zone n 2¢" E v Co - T ¢ To
(#) (%) (Mg/m®) (GPa) (MPa) (MPaj (°) (MPa)
I 25 2.40. 13.3 13 49.3 6.0 20.8 16.1
oA 27(12/15) 2.55 11.6 20 43.2 4.3 19.5 14.4
B 17(12/5) 2.55 26.7 14 95.9 12.8 26.0 98.5
m 25 2.39 13.3 13 49.3 6.0 20.8 16.1
IVA 33 2.39 8.1 .16 30.6 0.1 15.6 109
IVB 25 2.50 13.3 A7 49.3 6.0 20.8 16.1
vC 30 2.39 9.6 15 36.0 1.8 17.5 12.4
VA 22 2.58 16.8 .18 61.5 8.6 22.7 19.3
VB 24 2.44 14.3 .14 52.9 6.9 214 17.0
VI 23 2.59 15.5 19 56.9 7.7 221 18.1
VIIA 24 2.46 14.3 15 52.9 6.9 21.4 17.0
VIIB 24 2.54 14.3 18 52.9 6.9 214 17.0
VIIC 24 2.50 14.3 16 52.9 6.9 214 17.0
VI 19 2.64 21.8 .19 79.2 11.1 247 24.0
IX 17 2.62 25.7 A7 95.9 12.8 26.0 28.5

* From reference 11.
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Table 13. Limit-Case Mechanical Properties for each of the Yucca Mountain Thzrmal/Mechanical Zones

Zone S A E v C, T, ¢ To
(#) (%) (Mg/m®) (GPa) (MPa) (MPa) (°) (MPa)
I 31 2.34 9.0 13 : 34.0 .09 16.9 119
TA 41(16/25) 2.54 5.5 26 21.0 0.1 10.4 8.2
B 21(16/5) 2.54 182 16 66.6 9.4 23.4 20.7
m 31 2.33 90 13 £ 34.0 0.9 ' 169 11.9
VA 38 231 6.3 14 24.0 0.1 12.3 9.0
IVB 39 - 234 60 16 229 .0l 11.7 8.7
IVC 38 2.32 63 15 24.0 0.1 12.3 9.0
VA 28 2.52 109 19 406 35 | 18.8 13.7
VB 34 232 a1 14 29.0 0.1 149 10.5
VI 24 9.54 14.3 18 52.9 6.9 04 170
VIA 34 2.34 7.7 14 29.0 0.1 14.9 10.5
VIIB 34 2.42 7.7 ' 17 29.0 0.1 14.9 10.5
VIIC .34 2.38 7.7 ' .16 29.0 S 01 14.9 19.5
VII 25 2.54 13.3 18 49.3 6.0 20.8 16.1

IX 23 2.56 15.5 18 56.9 7.7 22.1 181

* From reference 12.
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Figure 1
Yucca Mountain stratigraphic column at drillhole USW-G1.
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Figure 2

A plot of Young s modulus as a function of grain density for SNLA
data from the Calico Hills, Bullfrog and Tram ash How tuffs. All tests

" were run on saturated samples under unconﬁned room temperature
and 107 87! conditions.
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Figure 3

A plot of Young’s modulus as a function of effective porosity for SNLA
data from the Calico Hills, Bullfrog and Tram ash flow tufls. All tests
were run on saturated samples under unconfined, room temperature
and 107% 5! conditions. '
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YOUNG’S MODULUS (GPa)
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Figure 4A

Plot of Young’s modulus as a function of effective porosity for zcolit-
ized SNLA data from the Calico Hills, Bullfrog and Tram ash flow

tuffs. All tesis were run on saturated samples under unconhncd room
temperature and 107° 37! conditions.
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Figure 4B

Plot of Young's modulus as a function of effective porosity for non-
zeolitized SNLA data from the Calico Hills, Bullfrog and Tram ash

flow tulls. All tests were run on saturated samples under unconfined,
room temperature and 10~° s~ conditions.
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POISSON'S RATIO
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Figure b
A plot of Poisson’s ratio as a function of effective porosity for SNLA
data from the Calico Hills, Bullfrog and Tram ash flow tuffs. All tests

were run on saturated samples under unconfined, room temperature
and 10™% s~ conditions.
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POISSON’S RATIO
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Figure 6

A plot of Poisson’s ratio as a function of grain density for SNLA data
from the Calico Hills, Bullfrog and Tram ash flow tuffs. All tests were
run on saturated samples under unconfined, room temperature and
10~% s~ ! conditions.
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Fig.ureA 7

A plot of unconfined compressive strength as a function of porosity
for SNLA data from the Calico Hills, Bullfrog and Tram ash flow
tuffs. All tests were run on saturated samples under unconfined, room

temperature and 10~° ! conditions.
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Figure 8
A plot of unconfined compressive strength as a function of effective
porosity for SNLA data from the Calico Hills, Bullfrog and Tram ash

flow tuffs. All tests were run on saturated samples under unconfined,
room temperature and 10> s~! conditions.
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Figure 9A

Plots of unconfined compressive strength as a function of effective
porosity for zeolitized SNLA data from the Calico Hills, Bullfrog and
Tram ash flow tulls. All tests- were run on saturated samples under
unconfined, room temperature and 10~ s~ conditions.
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Figure 9B

Plots of unconfined compressive strength as a function of effective
porosity for nonzeolitized SNLA data from the Calico Hills, Bullfrog
and Tram ash flow tuffs. All tests were run on saturated samples under
unconfined, room temperaturc and 1075 s~! conditions.
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Figure 10

A plot of unconfined compressive strength as a function of grain
density for SNLA data from the Calico Hills, Bullfrog and Tram ash
flow tuffs. All tests were run on saturated samples under unconfined,
room temperature and 10~° s~! conditions.
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Figure 11
A plot of axial strain at failure as a function of effective porosity
for SNLA data from the Calico Hills, Bullfrog and Tram ash flow
tuffs. All tests were run on saturated samples under unconfined, room
temperature and 107% s~ ! conditions.

4] .



AXIAL STRAIN AT FAILURE (%)

I T I | ‘ R S0
ASH FLOW TUFF (ALL DATA)
~ SATURATED
78 ,, 'UNCONFINED -
! € ~ 1075 sec-1 .
T~ 23° |
.62,— + 2 c -]
+ . + +
- + + + T .
+ + N
.46 |- . + . i* —
- . 1 I + : + I + + + —
.38} ' st :
* + e
- + . I . -
30 T
L ' | : + | 4
.26 S , v 1
| ] 1 1 ] | -

42

'2.35  2.40 - 2.45 2.50 2.55 2.60. 2.65 2.7

GRAIN DENSITY (gm/cc)

Figure 12
A plot of axial strain at failure as a function of grain density for SNLA
data from the Calico Hills, Bullfrog and Tram ash flow tuffs. All tests
were run on saturated samples under unconfined, room temperature
and 10™% s~ conditions.- :
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Figure 13

A plot of unconfined tensile strength as a function of effective porosity.
All data were obtained from Brazilian (indirect-tensile) tests. (Data
from Reference 1).
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Figure 14

A plot of maximum (ultimate) stress (strength) as a function of nega-
tive log strain rate for Grouse Canyon tuff data, The tests were run on
dry (oven dried) and wet (saturated) samples under unconfined and
room temperature conditions. (Figure from Reference 10.)
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Figure 15A

Mohr-Coulomb plot of shear stress as a function of normal stress for
Tiva Canyon Tuff samples from a depth of 87.6 m in drillhole UE25-
Al. The experimental conditions and the Coulomb failure criteria fit
parameters arc noted on the figure. :
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Figure 15B

Mohr-Coulomb plot of shear stress as a function of normal stress for
Topopah Spring Tuff samples from depths of 220.4-281.0 m in drillhole
UE25-A1. The experimental conditions and the Coulomb failure crite-
ria fit parameters arc noted on the figure.
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Figure 16C

Mohr-Coulomb plot of shear stress as a function of normal stress for
Topopah Spring Tuff samples from depths of 352.0-382.4 m in drillholc
USW-G1. The experimental conditions and the Coulomb failure crite-
ria fit parameters are noted on the figure. .
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Figure 15D

80

Mohr-Coulomb plot of shear stress as a function of normal stress for
Calico Hills Tuff samples from a depth of 453.4 m in drillhole USW-
G1. The experimental conditions and the Coulomb lailure criteria [it
paramcters arc noted on the ﬁ'gure.‘ :
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Figure 15E

Mohr-Coulomb plot of shear stress as a function of normal stress for
Calico Hills Tuff samples from a depth of 453.4 m in drillhole USW-
G1. The experimental conditions and the Coulomb fallurc criteria fit
parameters arc noted on thc figure.
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Figure 16F

Mohr-Coulomb plot of shear ‘strcss as a function of normal stress for

Calico Hills Tuff samples from depths of 454.1-515.7 m in drillhole
UE25-A1. The experimental conditions and the Coulomb failure crite-

" ria fit parameters are noted on the figure.
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Figure 156G
Mohr-Coulomb. plot of shear stress as a function of normal stress for
Calico Hills Tuff samples from a depth of 507.6 m in drilthole USW-

G1. The experimental conditions and the Coulomb failure criteria fit
paramecters are noted on the figure.
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SHEAR STRESS (MPa)
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Fi_gure' 16H

" Mohr-Coulomb plot of shear stress as a function of normal stress for

Calico Hills Tuff samples from a depth of 507.86 m in drillhole USW-
G1.:The experimental conditions and the Coulomb failure criteria fit
parametérs are noted on the figure.
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Figure 151

Mohr-Coulomb plot of shear stress as a function of normal stress for
Calico Hills Tuff samples from a depth of 508.4 m in drillhole USW-
G1. The experimental conditions and the Coulomb failure criteria fit
parameters are noted on the figure.
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Figupe 16J

Mohr-Coulomb plot of shear stress as a function of normal stress
for Prow Pass Tuff samples from depths of 599.8-613.8 m in drillhole
UE25-A1. The experimental conditions and the Coulomb failure crite-
ria fit parameters are noted on the figure. o
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SHEAR STRESS (MPa)
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Figure 16K

Mohr-Coulomb plot of shear stress as a function of normal stress for
Bullfrog Tuff samples from depths of 737.9-759.2 m in drillhole UE25-
Al. The experimental conditions and the Coulomb failure criteria fit
parameters are noted on the figure.
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Figure 15L

Mohr-Coulomb plot of shear stress as a function of normal stress for
Bullfrog Tuff samples from depths of 758.9-759.2 m in drillhole USW-
G1. The experimental conditions and the Coulomb failure criteria fit
parameters are noted on the figure. .

—T T T 7 7 ' !' L
- ) . BULLFROG TUFF 7]
: : uUsw-G1, . _,,
I 758.9 - 759.2 m
» ’ : T=200°C .
, é~10-4g-1 ]
~ _ ' SATURATED, DRAINED
— | | Ty =23.6 MPa ]
+ : ¢=19.6°
F L . -
- R ‘ -1
| // _
‘ . .
_1
_
. ; ' A%-L N T T
o . 50 100 150 200



SHEAR STRESS (MPa)

150]]!T]ll¥]]llli[7ll

- BULLFROG TUFF
' USW-G1,

B 758.9 - 759.2 m

T=200°C

é~10-4 -1

DRY, VENTED

100 —

To=16.5 MPa
¢=37.4°

50

T

o 50 100 150
NORMAL STRESS (MPa)

Figure 16M

Mohr-Coulomb plot of shear stress as a function of normal stress for
Bullfrog Tuff samples from depths of 758.9-759.2 m in drillhole USW-
G1.. The experimental conditions and the Coulomb failure criteria fit
parameters are noted on the figure.
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Figure 16

A plot of cohesion as a function of effective porosity for all pressure-
effects test series on Yucca Mountain tuff samples. The experimental
conditions for each data point are noted on the figure.
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Figure 17

A plot of angle of internal friction as a function of effective porosity
for all pressure-effects test series on Yucca Mountain tuff samples. The

experimental conditions for each data point are noted on the figure.
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Figure 18A

Plot of ultimate strength as a function of negative log strain rate
for Topopah Spring Tuff test series. All tests were run on saturated
samples under unconfined and room temperature conditions.
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Figure 18B

Plot of ultimate strength as a function of negative log strain rate for
Calico Hills Tuff test series. All tests were run on saturated samples
under unconfined and room temperature conditions.
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Figure 18C

Plot of ultimate strength as a function of negative log strain rate for
Tram Tufl test series. All tests were run on saturated samples under
unconfined and room temperature conditions.



YUCCA MOUNTAIN ZONATION AND STRATIGRAPHY
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Yucca Mountain thermal/mechanical zonation correlated with drill-
hole USW-G1 stratigraphy.
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Appendix
Uit Depth P, P, P, T é S D {(A0)y {e1du "E v ~n ~ py  Ref
(m) (MPa) (MPa) (MPa) {°C) (s~') (Y,R,N) (Y,N) (MPa) (%) (GPa) (%) (Mg/m?)
TC 267(Al) 0 0 0 23 - 100* R Y 364 Sy o3 9 . 10
TC  26.7(A1) 10 0 10 23 10—¢ R Y 396 - ¢3.9 .30 9 - 10
TC 267 (A1) 20 0 20 23 107 R Y 875 - £8.3° 22 9 - 10
TC  56.4 (A1) 20.7 0 20.7 200 10—4 R Y 105 - - - 27 - 10
TC 648(Al) O 0 0 23 10—4 R- Y 7.03 - 41 28 54 - 10
TS  2204(A1) O 0 0 .- 23 10~ R 'Y 138 - 40.4 22 13 - 10
TS 225.4(Al) 20.7 0 207 200 10— R .Y 133 - B9 15 1 - 10
TS. 311.4(Gl) O 0 0 23 105 Y Y 75.2 38 25.5 25 - - 16
TS 3233(Gl) O 0 0 23 10—3 Y Y 142.8 .50 38.1 32 - - 16
TS  334.0(Gl) O o 0 23 107 Y Y 598 34 M9 15 . - - 16
TS  3520(Gl) O 0 0 23 105 Y Y 106.2 37 2.5 33 - - 16
. TS 3520(Gl) 5 0 5 .23 105 'Y N 72.5 .59 19.2. d4 0 - - 16
TS  3546(Gl) 5 0 5 23 .107° Y N 219.3 Te 356 30 - - 16
TS  339.5(Gi) 5 0 5 23 103 Y Y 109.7 66 23.2 32 - - 16
TS  362.4(Gl) 10 0 10 23 10~ Y Y 119.3 66 25.6 30 - - 16
TS  371.3(Gl) O 0 0 23 10— Y Y 176.6 51 408 25 - - 16
TS  3725(Gl) O 0 0 23 102 Y Y 157.2 A€ 29.2 31 - - 16
TS  3725(G1) 0 0 0 23 10—+ Y Y 133.8 57 97.7 34 . - 16
TS  373.6(Gl) 0 0 0 23 104 Y Y 157.2 A€ 375 25 - - 16
TS 373.0(Gl) O 0 0 23 10—¢ Y Y 156.6 AT 353 21 - - 16
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Appendixz - Continued

Unit Depth P, P, P, T ¢ S D (Ac)y (€1)u E v ~n ~ pg Ref
(m) (MPa; (MPa) (MPa) (°C) (s7') (Y,RN) (Y,N) (MPa) (%) (GPa) (%) (Mg/m?)

TS 381.0(A1) O 0 0 23 10— R Y 166 - 61.8 .30 9 - 10
TS  381.0(A1) 10 0 10 23 10—* R Y 412 - 73.0 .23 9 - 10
TS  38L.0(Al) 20 0 20 23 10—4 R Y 618 - 59.9 21 9 - 10
TS 384.8(Gl) 0 0 0 23 10—2 Y Y 149.7 49 36.6 - - - 16
TS  390.0(Gl) O 0 0 23 10—¢ Y Y 44.9 41 22.9 27 - - 16
CH 4395(Gl) 0 0 0 23 10—5 Y Y 21.7 .43 6.40 - 39 2.51 15
CH 4395(Gl) O 0 0 23 10—5 Y Y 22.0 43 5.79 - 39 2.51 15
CH 4395(Gl) 0 0 - 0 23 10—5 Y Y 24.3 43 6.03 09 39 2.51 18
CH 4395(Gl) 0 0 0 23 10— Y Y 34.2 .56 8.84 .07 39 2.51 18
CH 4534(Gl) O 0 0 23 10—° Y Y 22.9 58 4.87 - 40 2.50 15
CH 4534(Gl) 0 0 0 23 10—5 Y Y 45.3 62 9.42 .09 40 2.50 18
CH 4534(G1l) O 0 0 23 10—5 Y Y 23.2 69 5.45 .09 40 2.50 18
CH 453.4(Gl) 10 0 10 23 10—5 Y N 25.4 45 6.85 34 40 2.50 15
CH 4534(Gl1) 10 0 10 23 10—° Y N 26.0 41 7.79 34 40 2.50 15
CH 453.4(Gl1) 10 0 10 23 10—° Y Y 29.9 68 5.57 - 40 250 15
CH 453.4(Gl) 10 0 10 23 105 Y Y 314 .66 6.16 22 10 2.50 15
CH 453.4(Gl) 20 0 20 23 10—° Y N 26.7 .50 7.38 - 40 2.50 15
CH 453.4(Gl1) 20 0 20 23 10—3 Y N 36.1 .52 7.93 - 40 2.50 15
CH 453.4(Gl) 20 0 20 23 10—5 Y Y 17.1 T 3.92 18 40 2.50 15
CH 4534(Gl1) 20 0 20 23 10—3 Y Y 34.4 64 6.24 A7 40 2.50 15
CH 454.1(A1) 0 0 0 23 10—* R Y 47.7 - 12.3 14 28 - 10
CH 4633(Gl) 0 0 0 23 10—° Y Y 18.9 a6 4.93 - 39 2.49 15
CH 4633(Gl1) 0 0 0 23 10—3 Y Y 20.7 .54 5.14 - .39 2.49 15
CH 4633(Gl) 0 0 0 23 10—3 Y Y 22.6 60 561 10 39 2.49 18
CH 4633(Gl) 0 0 0 23 10—° Y Y 29.6 60 4.41 A7 39 2.49 18
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Appendix - Continued

Unit Depth P, P, P, T é S D (A0). (€1)u E V ~n ~ Pg Ref
(m) (MPa) (MPa) (MPa] (°C) (s7) (Y,RN) (YN) (MPa) (%) (GPa) (%) (Mg/m®)
CH 4726(Gl) 0. 0 0 23 10—3 Y Y 35.9 61 7.03 - 43 248 15
CH 4726(Gl) O 0 0 23 10—5 Y Y 30.5 .54 7.45 - 43 2.48 15
CH 4726(Gl) 0 0 0 23 10—5 Y Y 53.1 70 128 07 43 2.48 18
CH 4726(Gl) O 0 0 23 10~3 Y Y 40.6 54 9.12 07 43 2.48 18
CH 486.1(Gl) 0O 0 0 23 10—3 Y Y 14.2 .41 3.51 - 40 2.38 15
CH 486.1(Gl) 0 0 0 23 10—5 Y Y 15.3 42 4.23 A9 40 2.38 15
CH 486.1(Gl). 0 0 0 23 10~ Y Y 22.3 .43 6.37 10 40 238 18
CH 486.1(Gl) O 0 0 23 10—5 Y Y 22.3 42 6.60 09 40 2.38 18
CH 489.2(A1) 20 0 20 23 10—¢ R Y 26.1 - 7.99 22 30 - 10
CH 4929(G1) O 0 0 23 1075 Y Y 265 . .43 7.86 26 37 2.41 15
_CH 4929(G1) © 0 0 23 10—3 Y Y 19.4 .37 717 25 37 2.41 15
CH 4929(Gl) © 0 0 23 10—3 Y Y 42.7 A48 11.0 10 37 2.41 18
CH 4929(Gl) 0 0 0 23 10—5 Y Y 26.6 36 9.41 10 37 2.41 18
CH 498.0(Al1) 207 0 20.7 23 10—4 R Y 67.5 - 8.50 27 32 - 10
CH 506.6(A1) 20 0 20 - 23 10—¢ R Y 70.3 - 9.57 25" 35 - 10
CH 5076(Gl) O 0 0 23 1073 Y Y 26.2 .50 6.86 A8 38 2.41 15
CH 5076(Gl). O 0 0 23 10—3 Y Y 34.1 42 9.52 - 38 2.41 15
CH 5076(Gl) 0 0 0 23 10—° Y Y 23.7 57 6.39 A8 38 2.41 18
CH 507.6(Gl) O 0 0 23 10—3 Y Y 376 AT 9.85 14 38 241 18
CH 5076(Gl) 0 0 0 23 10—5 R Y 41.0 .58 8.12 .29 38 2.41 15
CH 5076(Gl) © 0 0 23 10—3 R Y 32.7 54 6.50 31 38 2.41 15
CH 507.6(Gl) 10 0 10 23 10~5 Y N 35.7 50 8.90 31 38 2.41 15
CH 507.6(Gl) 10 0 10 23 10—5 Y N 27.6 59 8.48 30 38 2.41 15
CH 507.6(G1) 10 0 10 23 10—5 R N 61.3 1.1 7.20 7 38 2.41 15
CH 5076(Gl) 10 0 10 23 10—° R N 57.6 99 7.34 28 38 2.41 15
CH 507.6(Gl) 20 0 20 23 10—5 Y N 34.8 54 9.31 - 38 2.41 15
CH 507.6(Gl) 20 0 20 23 10—5 Y N 36.2 49 9.72 25 38 2.41 15
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Appendix - Continued

Unit Depth P, P, P, T ¢ S D (A0)u (€1)u E v ~n ~ pg Ref
{(m) {(MPa) (MPa) (MPa) (°C) s~ (Y,R,N) (Y,N) (MPa) (%) (GPa) (%) (Mg/m*
CH 5084(Gl) O 0 0 23 10—3 Y Y 24.7 61 5.41 33 37 2.45 15
CH 5084(Gl) O 0 0 23 10—3 Y Y 23.4 .58 5.45 49 37 2.45 15
CH 5084(Gl) O 0 0 23 10—3 Y Y 25.4 57 6.15 .36 37 2.45 15
CH 5084(Gl) O 0 0 23 103 Y Y 16.7 43 4.92 18 37 2.45 15
CH 5084(Gl) 10 0 10 23 10—5 Y N 18.9 49 4.28 - 37 2.45 15
CH 5084(Gl) 10 0 10 23 10—3 Y N 26.8 57 - 6.01 .36 37 2.45 15
CH 5084(Gl) O 0 0 .23 10~7 Y Y 21.5 55 7.86 21 37 2.45 15
CH 5084(Gl) O© 0 0 23 10~7 Y Y 19.9 51 7.03 .22 37 2.45 15
CH 515.7(A1) O 0 0 23 10—¢ R Y 40.8 - 14.0 .20 37 10
CH 5242(Gl) O -0 "0 23 10—3 Y Y 20.1 43 5.83 29 37 2.46 15
CH 5242(Gl) O 0 0 23 10—° Y Y 27.4 A4l 7.93 .30 37 2.46 15
CH 5242(Gl) O 0 0 23 1073 Y Y 23.7 50 6.81 21 "37 2.46 18
CH 5242(Gl) O 0 0 23 10—3 Y. Y 34.6 51 9.52 .10 37 2.46 18
CH 5309(Gl) © 0 0 23 10—° Y Y 39.1 87 84l 27 36 2.61 15
CH 530.9(Gl) © 0 0 23 10—3 Y Y 42.0 71 8.14 32 36 2.61 15
CH 5309(Gl) 0 0 "0 23 10—5 Y Y 55.5 63 12.4 14 36 2.61 18
CH 5309(Gl) 0 0 0 23 10—° Y Y 70.7 71 12.7 15 36 2.61 18
CH 544.0(Gl1) O 0 0 23 10—5 Y Y 15.4 79 2.55 34 29 2.65 15
CH 544.0(Gl) © 0 0 23 1073 Y Y 148 .75 2.52 37 29 2.63 15
CH 544.0(Gl) © 0 0 23 10—5 Y Y 20.8 a3 4.05 21 29 2.63 18
CH 5440(Gl) © 0 0 23 103 Y Y 21.6 64 4.61 20 29 2.65 18
PP 593.7(Al) 100 0 100 23 10—* R Y 299 - 22.0 20 19 - 10
PP 599.8(Al) 20 0 20 23 10—* R Y 176 - 27.0 20 18 - 10
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Appendix - Continued

Unit Depth P, P, P T é S D (A0)y (€1 u E v ~1 ~ pg Ref
(m) (MPa) (MPa) {MPa) (°C} (s7%) (Y,R,N) (Y,N) (MPa) (%)  {(GPa: (%) (Mg/m?)

PP . 6049(Gl) 0 0 0 93 1005 Y Y 14.7 36 491 43 32 254

PP 6049(Gl) © 0 0 23 1005 Y Y 13.5 30 525 . .39 32 2.54

PP 6049(Gl) O 0 0. 23 100 Y Y 11.7 35 3.4 09 32 254 18
PP 6049(G1) 0 0 0- 23 1075 Y Y 136 40 321 05 32 254 18
PP 6049(Al) 207 0 207 23 10=* R Y 207 - 31.0 25 15 - 10
PP 6138(Al) O 0 0 23 100* - R Y 130 - 479 .30 17 - 10
PP 6215(Al) O 0 o 23 10=* R Y 322 . - T84 18 31 - 10
Bu 6614(Gl) 0 0. 0 23 10—3 Y Y 471 47 115 11 98 248 13
Bu 661.4(Gl) 0 0 0 23 1005 Y Y 415 45 858 11 98 248 18
Bu 661.4(Gl) 0 0 0 23 100 Y Y 423 45 . 867 11 98 248 18
Bu 6803(Gl) 0. 0 .0 23 100 Y Y 19.3 45 534 12 30 244 13
Bu  6803(Gl) 0 0 0 23 1005 Y Y 17.9 52 2.76 08 39 241 18
Bu 689.1(Gl) 0 0 0 23 10— Y Y 23.7 4 624 06 36 241 18
Bu 6937(GI} 0 0 0. 93 10~5 Y Y 96.7 23 103 .12 34 240 13
Bu. 6937(Gl) 0 0 - 0 23 1073 Y Y 19.1 54 9.72 03 34 240 18
Bu 693.7(Gl) 0 0 0 23 10 Y Y 30.4 5 373 .04 34 240 18
Bu 693.7(Gl) 0 0 0 23 1075 Y Y 29.9 45 576 07 34 9240 18
Bu 7047(Gl) O 0 0 23 108 Y Y 416 3 158 .11 36 237 13
Bu 7047(Gl) 0 0 0 23 10~5 Y Y 32.7 kS 9.56 09 3 237 18
Bu 7047(Gl) O 0. 0 23 108 Y Y 241 .3 8.17 18 36 237 18
Bu 7214(Gl) O 0 0 23 108 Y Y 292 5 838 14 97 261 13
Bu 7214(Gl) O 0 0 23 108 Y Y 29.2 D 8’38 14 97 961 18
Bu 731.8(Al) 50 0 50 23 10— R Y 174 - 1.7 19 99 - 10




Appendix - Continued

Unit Depth P, T é (A0)y (€1)u E v ~1 Ref
(m) (MPa)  (°C) (s7') (Y,R,N) (Y,N) (MPa) (%) (GPa) (%)

Bu 733.4(Gl) 0 0 0 23 105 Y Y 34.7 A4l 9.82 - 25 8
Bu 7334(Gl) 0 0 0 23 10—3 Y Y 35.8 39. 973 - 25 8
Bu 7334(Gl) 0 0 0 23 10—5 Y Y 27 .50 7.74 11 25 18
Bu  7334(Gl) 0 0 0 23 10—5 Y Y 32 .53 8.89 13 25 18
Bu 736.0(Gl) © 0 0 23 105 Y Y 38.0 42 10.2 - 28 8
Bu 736.0(Gl) 0 0 0 23 10—3 Y Y 36.0 40 10.0 - 28 8
Bu 736.0(Gl) O 0 0 23 10—° Y Y 30.4 .38 8.10 - 28 8
Bu 736.0(Gl) 0 0 0 23 10—5 Y Y 35 60 9.20 12 28 18
Bu T736.0(Gl) 0 0 0 23 10—5 Y Y 36 60 9.26 13 28 18
Bu 736.0(Gl) 0 0 0 23 105 Y Y 29 53 8.67 16 28 18
Bu  737.9(Al) 20 0 20 23 10— R Y 145 - 19.2 23 22 10
Bu 740.3(Gl) 0 0 ¢ 23 10—3 Y Y 30.6 55. 8.71 A1 27 13
Bu 740.3(Gl) 0 0 q 23 10—9 Y Y 29.0 .52 8.01 16 27 13
Bu T740.3(Gl) 0O 0 0 23 10—3 Y Y 29.2 67 3.18 13 27 18
Bu 740.3(G1) 0 0 Q 23 10—5 Y Y 26.4 66 3.24 13 27 18
Bu 740.3(Gl) 0 0 0 23 10~° Y Y 23.6 69 2.64 13 27 18
Bu T747.3(A1) 0 0 G 23 10— R Y 54 - 6.37 05 20 10
Bu 7522(Gl1) © 0 0 23 10—5 Y Y 36.6 - - - 28 13
Bu  7522(Gl1) 0 0 0 23 10—% Y Y 46.3 56 12.6 14 28 13
Bu 7522(Gl) O 0 0 23 103 Y Y 37.2 74 3.82 12 28 18
Bu 7522(Gl) 0 0 C 23 10—5 Y Y 45.2 60 6.56 12 928 18
Bu 757.8(Gl) 0 0 ¢ 23 10—5 Y Y 38.3 36 12.0 - 23 8
Bu 757.8(Gl) 0 0 ] 23 10~° Y Y 49.9 .40 15.8 - 23 8
Bu 757.8(Gl) 0 0 ¢ 23 10—5 Y Y 60.1 40 18.2 - 23 8
Bu 737.8(Gl) 0 0 0 23 10~° Y Y 7 .52 13.7 11 23 18
Bu 757.8(Gl) 0 0 0 23 103 Y Y 46 51 13.1 .09 23 18
Bu 7578(Gl) 0 0 0 23 10—F Y Y 59 .58 14.6 14 23 18

69



oL

Appendix - Continued

Unit Depth P, P, P, T é S C (Ao)y (1) E v ~n ~ pg Ref
{m) (MPa) (MPa) (MPa) (°C) (s~ (,R,N) (Y,N) (MPa) (%) (GPa) (%) (Mg/m?)
Bu 759(Gl) 5 0 5 200 10 R Y 87 - 165 - o7 261 9
Bu 759(Gl) 10 5 5 200 10— Y Y 70 - 13.1 - 27 2.61 9
Bu 759 (G1) 10 0 10 206 104 R Y 93 - 15.7 - 27 261 9
Bu  759(Gl) 175 5 125 200 10* Y Y 83 - . 178 - 27 2.61 9
Bu  759(Gl) 207 0 20.7 200 10—* R Y 119 - 17.6 - 27 2.61 9
Bu  759(Gl) 20.7 0 20.7 200 10—4 R Y 148 - 20.5 - 2.61 9
Bu 759(Gl) 24.1 34 20.7 200 10—4 Y Y 86 - 13.8 - 27 2.61 9
Bu  759.2(A1) 20.7 0 207 . 23 10— R Y 140 - 22.1 .28 18 - 10
Bu 7624(Gl) 0 0 0 23. 10—3 Y Y 58.0 A1 15.1 - 24 261" 8
Bu 7624(Gl) 0 0 0 23 10— Y Y 72.9 49 17.2 - 24 2.61 8
Bu 762.4(Gl) 0 0 0o 23 107% - Y Y 73.2 40 20.8 - 24 261 8
Bu 762.4(Gl) 0 0 0 23 10—3 Y Y 59 45 17.2 14 24 2.61 18
Bu 7624(Gl) 0 0 0 23 = 103 Y Y 59 48 16.4 11 24 2.61 18
Bu 762.4(Gl) 0 0 0 23 103 Y Y 58 47 15.8 13 24 2:61 18
Bu T7735(Gl) © 0 0 23 10—3 Y Y 117 75 140 .09 24. 2.58 18
Bu T7812(Gl) 0 0 0 23 1073 Y Y 120 58 21.9 14 21 2.47 13
Bu 781.2(Gl)" 0 0 0 23 10—5 Y Y 153 54 28.9 14 21 2.47 13
Bu 781.2(Gl) - 0 -0 0 23 10— .Y Y 101 .52 20.6 12 21 2.47 18
Bu 781.2(Gl) 0 0 0 23 1675 Y Y 104 55 22.7 19 21 2.47 18
Bu 787.9(Gl) O 0 0 23 10—3 Y Y 717 51 15.2 08 24 2.39 13
Bu 7879(Gl) 0 0 0 23 10—3 Y Y 83.7 58 15.7 12 24 2.39 13
Bu 7879(Gl) 0 0 0 "23 10—3 Y Y - 73.9 69 12.5 13 24 2.30 18
Bu 7879(Gl) O 0 0 23 10—5 Y Y 67.1 64 11.6 17 24 2.39 18




1L

Appendix - Continued

Unit Depth P, Py P, T 3 S D (Ao), (€1)u E v ~1 ~ fq Ref
(m) (MPa) (MPa) (MPa) (°C) (s7') (Y,R\N) (Y,N) (MPa) (%)  (GPa) (%) (Mg/m?)
Bu 7949(Gl) O 0 0 23 10—5 Y Y 71.9 45 18.4 .14 24 2.47 13
Bu 7949(Gl) 0 0 0 23 10—3 Y Y 73.5 47 19.4 13 24 2.47 13
Bu 7949(Gl) 0 0 0 23 1075 Y Y 60.4 51 11.7 10 24 2.47 18
Bu 794.9(Gl) 0 0 0 23 105 Y Y 72.7 49 17.2 16 24 2.47 18
Bu  8049(Gl) 0 0 0 23 1073 Y Y 50.2 57 10.4 14 28 2.49 13
Bu 8049(Gl) O 0 0 23 10—° Y Y 45.2 63 6.99 12 28 2.49 18
Bu  804.9(Gl) 0 0 0 23 107° Y Y 47.0 69 6.66 11 28 2.49 18
Tr  8227(Gl) O 0 . 0 23 10—3 Y Y 60.1 46 14.5 16 33 2.52 14
Tr 8227(Gl) 0 0 0 23 10—° Y Y 53.6 .51 13.3 18 33 2.52 14
Tr 8227(Gl) O 0 0 23 10~3 Y Y 45.3 .50 9.47 11 33 2.52 18
Tr  822.7(Gl) © 0 0 23 10—° Y Y 63.9 .58 10.9. 11 33 2.32 13
Tr 856.5(Gl) 0 0 0 23 103 Y Y 42.0 .36 15.2 38 23 2.61 14
Tr 856.5(Gl) 0 0 0 23 10~3 Y Y 46.0 43 14.2 31 23 2.61 14
Tr 856.5(Gl) 0 0 0 23 10—5 Y Y 76.2 39 14.9 A7 23 2.61 18
Tr  856.5(Gl) O 0 0 23 19—3 Y Y 66.4 .42 14.2 21 23 2.61 18
Tr  883.0(Gl) 0 0 0 23 10~5 Y Y 68.1 43 21.3 27 21 2.2 14
Tr  883.0(Gl) 0 0 0 23 10—° Y Y 69.2 45 19.9 24 21 2.62 14
Tr 883.0(Gl) 0 0 0 23 10—3 Y Y 95.8 50 18.3 21 21 2.62 18
Tr  883.0(Gl) O 0 0 23 10—3 Y Y 115 55 20.0 22 21 92.62 18
Tr  913.4(Gl) 0 0 0 23 10=° Y Y 67.6 36 22.5 23 21 2.59 14
Tr  9134(Gl) 0 0 0 23 10~° Y Y 40.9 .29 18.9 - 21 2.59 14
Tr  9134(Gi) 0 0 0 23 10—7 Y Y 84.2 63 101 =~ .07 21 2.59 18
Tr  9134(Gl) 0 0 0 23 10—5 Y Y 90.7 39 21.8 24 21 2.59 18

o e e



oL

Appendix - Continued

Unit Depth P, P, P, T € 3 D (Ac)y  (£1)u E ~0 o~ Py Ref
(m) (MPa) (MPa) (MPa) (°C) (s7!) (Y,R)N) (Y,N; (MPa) (%)  (GPa) (%) (Mg/m®)
Tr  923.8(Gl) .0 0 0 23 10—5 I'¢ Y 33.1 37 13.4 - 26 238 14
Tr  9238(Gl) 0 0 0 23 10—5 v Y 28.6 46 105 - .28 26 258 14
Tr 9238(Gl) O 0 0 23 10—8 N Y 51.7 45 109 .14 26 2,58 18
Tr  9238(Gl) O 0 0 23 10—5 Y Y 64.7 51 11.9. 21 26 2.58 18
Tr 9456(Gl) 0 0 0 23 10—5 ( Y 20.2 42 5.80 .20 33 2.56 14
Tr 9456(Gl) O 0 . 0 23 10—3 Y Y 41.5 .50 7.20 14 33 2.56 14
T  9456(Gl) © 0 0 23 10—3 Y Y 37.1 .50 6.78 .16 33 2.56 18
Tr  9754(Gl1). 0 0 0 23 10—5 v Y 33.0 AT 8.:60 17 26 2.61 14
Tr 9754(G1) O 0 0 23 10—3 v Y "25.8 A48 7.36 - 26 2.61 14
T 9754(Gl) O 0 0 23 10— Y Y 322 .18 2.61 07 2 261 18
Tr  975.4(G1) © 0 0 23 10—5 Y- Y 52.6 55 . 7.92 19 26 -261. 18-
Tr 9762(Gl) O 0 0 23 10—2 Y Y 31.1 52 6.63 - 25 2.61 14
Tr 976.2(Gl1) © 0 0 23 10—2 Y Y 244 . .50 517 - 25 261. 14
T 9762(Gl) 0O 0 0 23 107¢ - Y Y . 25.3 .50 6.42 - 25 2.61 14
Tr 9762(Gl) 0 0 0 23 10—¢ Y Y 2211 32 8.76 - 25 2.61 14
Tr 976.2(Gl) O. 0 0 23 10—4 Y Y 32.6 44 8.97 .09 25 2.61 14
Tr 976.2(Gl) 0 0 0 23 10— Y Y ¢ 14.5 31 7.04 .30 25 2.61 14
Tr 976.2(Gl) 0 0 0 23 108 Y Y 26.5 50 8.26 14 25 2.61 14
Tr  1008.3(Gl) 0 0 0 23 10—° Y Y - 256 33 8.47 26 33 2.64 14
Tr  1008.3(G1) © 0 0 23 19— Y Y 46.4 51 9.39 11 33 2.64 18
Tr  1008.3(Gl1) O 0 0 23 10—3 Y Y 51.7 37 8.26 11 33 2.64 18
Tr  1037.9(G1) © 0 0 23 1075 Y Y 30.0 35 8.85 18 28 2.66 14
Tr  1037.9(G1) . 0 0 0 23 10—5 Y Y 37.3 .34 12.4 31 28 2.66 14
Tr  1037.9(G1) -0 0 0 23 10—5 Y Y 29.9 .39 6.66 - 23 28 2.66 18
T  1037.9(G1) 0 0 0 23 10—3 Y Y " 41.2 37 9.95 29 28 2.66 18
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Appendix - Continued

Unit Depth P, P, P, T é S D (A0)y (€1)u E v ~1 ~ py Ref
(m)  (MPa) (MPa) (MPa) {°C) (s7') (Y,RN) (Y,N) (MPa) (%) (GPa) (%) (Mg/m®)

Tr 1066.3(G1) O 0 0 23 10—5 Y Y 17.8 .34 5.56 31 42 2.69 14

Tr  1066.3(Gl) O 0 0 23 1073 Y Y 174 31 5.47 - 42 2.69 14

Tr 1066.3(G1) 0 0 0 23 10—3 Y Y 27.6 41 6.30 A7 42 2.69 18

Tr 1066.3(G1) 0 0 0 23 103 Y Y 26.1 .46 4.90 15 42 2.69 18
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