Selection of LWR cycle length and fuel reload fraction

PDF Version Also Available for Download.

Description

The continuing evolution of fuel having ever higher burnup capability and the increased emphasis on high plant capacity factor to keep nuclear power cost-competitive, motivates re-examination of some basic fuel management strategies. Specifically, what are the economic optimum goals for the fraction of core to be refueled, 1/n, and the length of the intra-refueling cycle, T{sub c}. The authors present a simple model to study these questions. They conclude that unless substantial improvements in technology are forthcoming, or economic circumstances change significantly, departure from 2- to 4-batch management, or longer than 2- to 3-year cycles in LWRs is not supported ... continued below

Physical Description

5 p.

Creation Information

Driscoll, M.J.; Handwerk, C.S. & McMahon, M.V. October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The continuing evolution of fuel having ever higher burnup capability and the increased emphasis on high plant capacity factor to keep nuclear power cost-competitive, motivates re-examination of some basic fuel management strategies. Specifically, what are the economic optimum goals for the fraction of core to be refueled, 1/n, and the length of the intra-refueling cycle, T{sub c}. The authors present a simple model to study these questions. They conclude that unless substantial improvements in technology are forthcoming, or economic circumstances change significantly, departure from 2- to 4-batch management, or longer than 2- to 3-year cycles in LWRs is not supported by their analysis.

Physical Description

5 p.

Notes

INIS; OSTI as DE98050464

Source

  • ARS `97: American Nuclear Society (ANS) international meeting on advanced reactors safety, Orlando, FL (United States), 1-5 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98050464
  • Report No.: INEL/CON--97-00070
  • Report No.: CONF-970607--
  • Grant Number: AC07-94ID13223
  • Office of Scientific & Technical Information Report Number: 604350
  • Archival Resource Key: ark:/67531/metadc690457

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 25, 2016, 12:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Driscoll, M.J.; Handwerk, C.S. & McMahon, M.V. Selection of LWR cycle length and fuel reload fraction, article, October 1, 1997; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc690457/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.