Title: A 2.14 ms Candidate Optical Pulsar in SN1987A: Ten Years After

Author(s): J. Middleditch
J. A. Kristian
W. E. Kunkel
K. M. Hill
R. D. Watson

Submitted to: Proceedings of AN1987A
La Serena, Chile
February 23-28, 1997

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
A 2.14 ms Candidate Optical Pulsar in SN1987A

J. Middleditch1,2
Scientific Computing, CIC-19, MS B256, Los Alamos National Laboratory, Los Alamos, NM 87545

J. A. Kristian1,3 and W. E. Kunkel1
Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101

K. M. Hill & R. D. Watson
Mathematics & Physics Departments (respectively), University of Tasmania, Hobart, Tasmania, Australia

Abstract.
We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz – a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. ’92 through August ’93, prior to its apparent subsequent fading, is highly improbable (< 10^{-10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a ~1,000 s period which, when taken with the high spindown of the source (2-3×10^{-10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non-axisymmetric oblateness of ~10^{-6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by an order of magnitude.

1Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation

2Other co-authors include: R. Lucinio, Division of Geological & Planetary Science, 170-25, Caltech, Pasadena, CA 91125; J.N. Inamura, Institute for Theoretical Science, University of Oregon, Eugene, OR 97403; T.Y. Steiman-Cameron, Space Science Division, NASA Ames Research Center, MS245-3, Moffett Field, CA 94035; G.G. Fazio, S.M. Ransom & S.S. Eikenberry, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138; A. Shearer, R. Butler & M. Redfern, Physics Department, University College, Galway, Ireland; & A.C. Danks, NASA Goddard SFC, Code 683.0, Bldg. 21, Greenbelt, MD 20771.

3We are saddened by the death of our colleague, Dr. Kristian, in June 1996
1. Introduction

We present evidence herein for the presence of an unique, 2.14-ms pulsar, which appears to precess and whose spindown is apparently dominated by gravitational radiation, but one which has also been very difficult to detect over the past three years due to its faintness and the complicated nature of its signal. A more detailed and exhaustive treatment of this candidate and upper limits for any other signal are given elsewhere (Middleditch et al. 1997).

2. Observations

The observations discussed in this work were made between Feb. '92 and Feb. '96, using the LCO 2.5-m, CTIO 4-m, U. Tasmania 1-m, and the ESO NTT (3.5-m) telescopes. In addition, archival data from the HST on SN1987A was also used. A GaAs tube with an 800 nm longpass filter were used for the first year (ibid.).

3. Discovery of the 2.14 ms Signal

3.1. LCO Feb. 14-16, 1992

We first detected the 2.14 ms periodicity in data taken at the LCO 2.5-m Dupont telescope during 1992 Feb. 14-16 UT. The 2nd harmonic phase was twice that of the fundamental, a sure sign of a “peaked” pulse profile, which turned out to have a noise probability of $\sim e^{-27.45}$ when actually computed. This profile is...
shown in Fig. 1, folded into 20 phase bins per cycle, together with results from the U. Tas 1-m which will be discussed in part below. The statistics of the pulse profiles are derived from folding into 11 phase bins.

3.2. LCO February 1993 – The Rosetta Stone

We continued to observe SN1987A with the 800 nm longpass filter in the year following the initial appearance of the 2.14-ms signal. A targeted search was made using the sum of the complex Fourier amplitudes, $a(f)$, near the ~467.5 Hz fundamental frequency, f, with those near the ~935 Hz second harmonic, $a(2f)$, computed in the following way:

$$a_{\text{sum}} = \left(||a(f)|| + e^{i(\phi(2f)-2\phi(f))}||a(2f)|| \right)/\sqrt{2}$$

where $\phi(f)$ is the phase of $a(f)$, and $\phi(2f)$ is the phase of $a(2f)$.

On the night of 6 Feb. UT 1993, in a run on the LCO 2.5-m which lasted ~80 minutes before high humidity forced an early termination (conditions were otherwise perfect), an unusual pattern of power appeared in the sum of the Fourier spectra from frequency regions encompassing 467.4843 Hz (close to the extrapolation of the Feb. '92 frequency) and twice this value (Fig. 2).

The three high peaks in the sum power spectrum, are, to within errors, evenly spaced by 0.00214 Hz, modulo the 467.5 Hz fundamental frequency, and immediately suggest a periodic modulation in the phase/frequency and/or amplitude of the 2.14 ms signal with a period of ~467 s. The 467.48429 Hz frequency of the central peak (1/3 of the frequency of the top scale) also indicates a mean spindown for the pulsar implied by the 2.14 ms signal for the ~1 year interval between Feb. '92 and Feb. '93 of about -3×10^{-10} Hz/s.
The probability of noise producing three such peaks in the sum spectrum, each exceeding 10 times mean power, is less than 10^{-5}, even considering the rest of the data from Feb. '93 and Nov. '92 (Middleditch et al. 1997). Further modulation structure of the individual Fourier power peaks of the fundamental and 2nd harmonic lead to a further, very conservative, reduction in this probability by a factor of 100, in addition to the realization that the period of modulation was actually twice 467.5 s, or 935 s. Thus the probability fell to 10^{-7}.

The remainder of the data from LCO during 1992 and Feb. 1993 was searched for the 2.14 ms signal and ~1,000 s modulation, and evidence was found for this signal and modulation in data taken on the other nights at LCO and CTIO (the 3rd, 5th, 7th, 11th, and 12th of Feb. '93) and in two of three nights during Nov. '92 (the 6th and 8th). In addition, a moderately strong and consistent 1430 s modulation was found in the data from Feb. '92.

4. Observations from Tasmania, 1993

By the time the pattern of the 2.14 ms signal was beginning to be discerned, the regular '92/'93 observing season was over. In order to continue observations during an interval in which the signal seemed reasonably consistent, observations had to be made from farther south. Thus the search continued (in the broad
Figure 4. The time histories of the \(~1,000\) s modulation period (lower), the \(~467.5\) Hz pulse frequency (middle), and the inferred I flux (upper) for points earlier than day 500, \(V+R+I\) composite for LCO and CTIO points afterward, and \(S20\) band magnitude for HST, Galway/NTT, and U. Tas. points.

\(S20\) band) with the 1-m telescope of the University of Tasmania, which was sufficiently far south to allow observations of SN1987A while under the pole (and through at most 2.7 airmasses).

A peak in the Fourier power spectrum at 467.481992 (5) Hz was found in the initial observation made from Tasmania on May 16, 1993 UT. The pulse profile had “flat” main and interpulses, both of which sharpened far more than would be expected from noise (which would have added only relatively “smooth” structure) when the obvious \(~1,000\) s phase modulation of the 2nd harmonic was incorporated into the pulse folding (see Middleditch et al. 1997).

The next observation, made on July 26, 1993, has over ten times mean power for a fundamental frequency near 467.48056(1) Hz, and a second harmonic with about half as much power at exactly twice this frequency, and stands out very clearly in the sum spectrum (Fig. 3). The pulse profile of this signal confirmed the Fourier spectral analysis, indicates a mean magnitude of 21.6 for the 320-750 nm \(S20\) band, and is similar to that of the Feb. ‘92 observations (Fig. 1).

SN1987A was observed again four weeks later on 23 August ‘93. Analysis of this observation revealed a peak in the sum of the 2nd and third harmonics, and in addition, power in the fourth and fifth harmonics, when folded at 467.479874(4) Hz. Unusually high numbers (0.67±0.073 and ±0.095, where 0.5 is expected – Middleditch et al. 1993) for the centroids of harmonics 2 and 5 (3 and 4 were still > 0.5) led to the discovery that most of the contribution to the main pulse occurred during the last hour of the observation. The pulse profile
for this hour, a single sharp pulse, is less probable still than that of the July 26 data \((2.44 \times 10^{-7})\), and the peak in the sum spectrum produced by the 2nd and third harmonics for this run is even higher than that shown in Fig. 3.

Observations of SN1987A and detections of the 2.14 ms signal continued on the big telescopes, in spite of the fading of the signal after Sep. '93 (Fig. 4). The data from all telescopes, large and small, remain consistent.

If the apparent precession is a result of the same non-axisymmetric oblateness (relative to the axis of rotation) which drives the apparent spindown, then \(\Omega_{\text{prec}} \propto \frac{\delta I}{I} \omega_{\text{spin}}\) and \(\frac{\partial \omega_{\text{spin}}}{\partial t} \propto (\delta I)^2\), where \(\omega_{\text{spin}}\) is the rotational frequency of the pulsar, \(\Omega_{\text{prec}}\) is the precession frequency, \(I\) is the moment of inertia of the (precessing part of) the neutron star, \(\delta I\) is the non-axisymmetric contribution to \(I\), and \(\frac{\partial \omega_{\text{spin}}}{\partial t}\) is the spindown. Combining these gives, \(\frac{\partial \omega_{\text{spin}}}{\partial t} \propto \Omega_{\text{prec}}^2\) (Fig. 5).

Acknowledgments. We would like to acknowledge the Australian Academic Research Network for network access. JNI, TYS-C, GGF & SMR were also visiting astronomers at CTIO. This work was also based in part on observations made at the European Southern Observatory, use of the resources of the Advanced Computing Laboratory of Los Alamos National Laboratory, and performed under the auspices of the Department of Energy.

References

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.