Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

PDF Version Also Available for Download.

Description

Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to ... continued below

Physical Description

22 p.; Other: FDE: PDF; PL:

Creation Information

Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N. & Mew, D.A. March 11, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to in situ destruction. Today, the principal treatment methods for chlorinated solvent- and PAH-contaminated soil are to remove it to landfills, or incinerate it on site. The most effective method for treating ground water, Dynamic Underground Stripping (Newmark et al., 1995), still involves removing the contaminant for destruction elsewhere. Hydrous pyrolysis/oxidation would eliminate the need for long-term use of expensive treatment facilities by converting all remaining contaminant to benign products (e.g., carbon dioxide, water, and chloride ion). The technique is expected to be applicable to dense non-aqueous phase liquids (DNAPLS) and dissolved organic components. Soil and ground water would be polished without bringing them to the surface. This would dramatically decrease the cost of final site closure efforts. Large-scale cleanup using hydrous pyrolysis/oxidation may cost less than $10/yd. The end product of hydrous pyrolysis/oxidation is expected to be a clean site. The delivery concept for hydrous pyrolysis/oxidation utilizes the established experience in heating large volumes of ground developed in the Dynamic Underground Stripping Demonstration (Newmark et al., 1995). Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the subsurface. When injection is halted, the steam condenses and contaminated groundwater returns to the heated zone. It mixes with the condensate and oxygen, destroying any dissolved contaminants. This avoids many of the mixing problems encountered in other in situ oxidation schemes. In other oxidation schemes, an oxidizing reagent is injected into the subsurface resulting in the displacement of the contaminant. Without a return process such as the steam condensation, the contaminant and oxidant never mix. Using hydrous pyrolysis/oxidation, DNAPLs and dissolved contaminants may be destroyed in place, without surface treatment. This will improve the rate and efficiency of remediation by rendering the hazardous materials into benign ones via a completely in situ process. Because the subsurface is heated during this process, hydrous pyrolysis/oxidation also takes advantage of the large increase in mass transfer rates which make contaminant more available for destruction, such as increased diffusion out of silty sediments. Many remediation processes are limited by the access of the reactants to the contaminant, making mass-transfer limitations the bane of remediation efforts in low-permeability media. In preparation for testing this method at Lawrence Livermore National Laboratory (TCE in groundwater) and at a Southern California pole treating site (fire product with PAH and pentachlorophenol), we are developing a concept for the implementation of hydrous pyrolysis/oxidation through co-injection of steam and possibly small amounts of oxygen, as well as evaluating the rate at which hydrous pyrolysis/oxidation occurs due to the natural presence of mineral oxidants such as manganese oxides when the water temperature is raised. We are also determining the thermodynamic properties (e.g., solubility, Henry`s Law constants, etc.) of these hazardous compounds, as a function of T and P, in order to be able to predict effectiveness and required time for design purposes and to optimize clean-up through the use of process-oriented hydrologic transport and geochemistry models. In spite of recent advances in modeling capabilities, the thermodynamic data necessary to make design calculations for elevated temperatures are essentially nonexistent. Simple extrapolations from room-temperature data will not suffice.

Physical Description

22 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98050864

Source

  • National spring meeting and petrochemical exposition of the American Institute of Chemical Engineers (AIChE) and 2. plant operations and design conference, Houston, TX (United States), 10-13 Mar 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98050864
  • Report No.: UCRL-JC--126636
  • Report No.: CONF-970321--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 598773
  • Archival Resource Key: ark:/67531/metadc690411

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 11, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 23, 2016, 1:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N. & Mew, D.A. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants, article, March 11, 1997; California. (digital.library.unt.edu/ark:/67531/metadc690411/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.