This document has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401.

Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
FOREWORD

2. This technical standard provides guidance to DOE staff and contractors that can be used to modify existing programs or to develop new programs. DOE contractors should not feel obligated to adopt all parts of this guide; rather, they can use the information to develop programs that apply to their facility. This guide can be used as an aid in the construction and administration of written, oral, and performance examinations. Course designers, developers, instructors, and training managers may find this guide useful.

3. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), U.S. Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal (DOE F 1300.3) appearing at the end of this document.

4. DOE technical standards, such as this Handbook, do not establish requirements. However, all or part of the provisions in a technical standard can become requirements under the following circumstances:

 (1) they are explicitly stated to be requirements in a DOE requirements document; or

 (2) the organization makes a commitment to meet a technical standard in a contract or in a plan or program required by a DOE requirements document.
INTENTIONALLY BLANK
TABLE OF CONTENTS

FOREWORD .. iii

1. **INTRODUCTION** ... 1
 1.1 Purpose .. 1
 1.2 Discussion .. 1

2. **THE PURPOSES OF TESTING** .. 3
 2.1 Trainee Assessment .. 3
 2.2 Trainee Selection and Placement .. 4
 2.3 Trainee Motivation ... 4
 2.4 Instructional Improvement ... 4
 2.5 Program Evaluation ... 5
 2.6 An Instrument to Provide Feedback ... 5

3. **BASIS OF THE TEST** ... 7
 3.1 Analysis Prior to Testing ... 7
 3.2 Learning Objectives .. 7
 3.3 Test Banks .. 8
 3.4 Selection of Test Format ... 9

4. **WRITTEN AND ORAL TESTS** .. 11
 4.1 Open Reference Test .. 11
 4.2 Test Specifications ... 12
 4.3 Test Construction .. 14
 4.4 Test Layout and Assembly ... 15
 4.5 Written Test Administration .. 16
 4.6 Oral Test Administration .. 18
 4.7 Scoring the Test .. 20
1. INTRODUCTION

1.1 Purpose

The purpose of this Guide to Good Practices is to provide direction to training personnel in the broad areas of design, development, and implementation of examinations.

1.2 Discussion

Nuclear facilities spend a significant amount of training resources testing trainees. Tests are used for employee selection, qualification, requalification, certification and recertification, and promotion. Ineffective testing procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and facility operations. Test development requires unique skills, and as with any skill, training and experience are needed to develop the skills. Test development, test use, test result interpretation, and test refinement, like all other aspects of the systematic approach to training, should be part of an ongoing, systematic process.

For some users this document will provide a review of ideas and principles with which they are already familiar; for others it will present new concepts. While not intended to provide in-depth coverage of test theory design and development, it should provide developers, instructors, and evaluators with a foundation on which to develop sound examinations.
2. THE PURPOSES OF TESTING

There are several reasons for using tests in job and training environments. These include:

- Trainee assessment
- Trainee selection and placement
- Trainee motivation
- Instructional improvement
- Program evaluation
- Testing as a teaching instrument.

These reasons each have their benefits and are applicable to the development and conduct of DOE training programs. In a program based on the systematic approach to training, tests are normally designed and developed for the purpose of trainee assessment. However, the other reasons listed can also be achieved by analyzing and interpreting the test results.

2.1 Trainee Assessment

When designing a test, the purpose of the test should always be to evaluate which learning objectives have been met and therefore the knowledge acquired or which tasks or partial tasks a trainee is qualified to perform. However, the results of the test may be used to tell us more than that when combined with other evaluation results. For example, results may indicate that:

- the trainee qualifies for advanced placement or exception
- the material on a particular subject needs upgrading
- a particular test question is poorly worded.

When properly developed and conducted, testing should provide a valid and reliable indicator of trainee performance. Whether written, oral, or performance, tests provide the most complete and efficient method of collecting and documenting data on trainee performance. Observation interviews and other applied research methods can also offer a significant amount of information.
The most common test type for the performance-based training environment is the performance test. These tests are normally developed by the facility training department and are used to qualify, requalify, and test the progress of trainees for a specific task, job, or position. A pass/fail system is based on a preestablished cutoff score. Most tests of this type are not designed to identify unique trainee strengths or weaknesses but can be used for this purpose.

2.2 Trainee Selection and Placement

Tests are useful for trainee selection and placement. Entrance tests are sometimes used as a basis for the initial decision for hiring an employee or for waiving specific job training requirements after that employee begins work. Test scores may also indicate the need for remedial training. Many facilities use aptitude tests for placement of trainees in training programs. Some use interest inventories and psychological evaluations to aid in job placement. If a facility uses placement tests, the facility management, personnel department, and training staff should make placement decisions based, in part upon test scores.

2.3 Trainee Motivation

Tests are powerful motivators. Trainee study habits can be affected by test schedules. When tests are given on a daily or weekly basis, trainees may study more in anticipation of those tests. Likewise, when there is only an end-of-course test, many trainees may postpone studying until just before the test. Trainees are also generally motivated by the feedback that a test score provides. Low test scores could raise trainees' anxiety levels, which if properly channeled, can result in increased concentration and study.

2.4 Instructional Improvement

Test results can provide constructive feedback regarding the effectiveness of a training program. If an instructor fails to adequately cover a topic in a classroom presentation or a laboratory exercise, lower test results may reveal the omission. Uniformly high scores for a topic or subject area may indicate that instruction was effective, and can signify the readiness of the trainees for more detailed material or for the next step in the training.
program. Conversely, low scores may indicate a need for improvement in instruction or teaching material, or that more instruction time is needed. For example, if a significant number of trainees missed questions based on one learning objective, training may be found to be inadequate for that objective.

2.5 Program Evaluation

Trainee test scores should be combined and analyzed to obtain course or program performance information. This information can be valuable in assessing program strengths and weaknesses. To maximize the usefulness of the test data, systematic reviews should be conducted. Programmatic information can be obtained by analyzing and interpreting the results of tests, and then comparing that data with information acquired from instructor, supervisor, and trainee questionnaires. When combined, these sources can form a composite picture of program strengths and weaknesses and appropriate actions can be taken to correct deficiencies.

2.6 An Instrument to Provide Feedback

Instructors who view testing as only an evaluation tool often overlook the opportunity to use testing as a learning tool. An application of testing as teaching can be seen in the On-the-Job Training (OJT) process. In this activity, the trainees perform tasks under the supervision of a subject matter expert (SME). If the trainees perform properly, the performances are acknowledged; if not, the trainees are given immediate feedback on what errors were made and the proper steps needed to correct them. When this occurs during the training process, the trainees may have the opportunity to make the corrections at once. Testing can also provide effective feedback in the classroom, especially when test results are reviewed with the trainees. An open discussion of incorrect answers and why the wrong answers were selected can be very beneficial for both trainee and instructor.
3. BASIS OF THE TEST

Test design and development should not be viewed as a strictly defined mechanical process with blind application of testing principles. Rather, a good test is the direct result of the implementation of testing principles. The test developer should be knowledgeable of good testing principles, the subject matter, its significance, and the most appropriate training setting and method for the material.

3.1 Analysis Prior to Testing

Specific areas to be tested should be proven important to job performance. Proper analysis of the job or task for which the trainee is being trained provides direction for the entire training program. Tasks required for competent job performance are identified, documented, and included in the training program as a result of a job analysis. Learning objectives that identify training content and define satisfactory performance are derived from these tasks. Effective testing requires learning objectives to be carefully selected and classified prior to test development.

Detailed discussions of three types of analyses (needs, job, and task) are found in the DOE Training Program Handbook: A Systematic Approach to Training. Alternative methods for analysis are discussed in the DOE Handbook Alternative Systematic Approaches to Training. DOE nuclear facilities should perform plant-specific analyses that provide detailed bases for their training programs. These analyses should be conducted by personnel who have been trained to conduct analyses of training requirements.

3.2 Learning Objectives

Learning objectives identify the knowledge and skills that are necessary to perform the job or task. A properly designed learning objective will allow the test developer to determine the specific aspects of the knowledge, skills, or ability to be measured by the test item. Learning objectives also provide the conditions under which the test will take place and a standard against which test items are judged.
Along with learning objectives, the test developer should review any available supporting instructional materials and other facility reference material to assist in test development. For a more detailed discussion on learning objectives refer to the DOE Guide to Good Practices for the Development of Learning Objectives.

3.3 Test Banks

Facility training departments should develop and maintain test banks. These banks should consist of previously used tests, answer keys, and test items. Not only do these test banks save a great deal of time, but the resulting tests are significantly improved because of any modifications made following the use of each test. Training programs should include such a test bank and instructors should collect test analysis information each time a test is used. Since facility training organizations may provide training by program area using several instructors, it is important that the test bank concept be applied at the program level. In this way, the size, scope, and uniformity of the testing process will be improved.

The widespread use of computers and data-base software has added significantly to the capabilities and flexibility of such systems. For example, multiple versions of a test may be produced to increase test security during administration. There is a large amount of written test generation and records maintenance software systems available to increase the ease and efficiency of test development and administration. These systems provide an effective tool for test item evaluation and improvement.

Test Bank Establishment Considerations

The following should be considered when establishing test banks:

- The scope of the bank
- Effective security controls for computerized test banks
- An ongoing program for test and test item analysis
- The use of machine-scored answer sheets as appropriate
- Clear guidelines and procedures
- A test outline or test specifications
• A test item numbering system. The following is a list of potential test item identifiers:
 - Program
 - Procedure number
 - Lesson plan
 - Learning objective
 - Test item format
 - Test item level
 - Point value
 - Date test item is generated
 - Test item generated
 - Dates test items are used on tests.
• An ongoing program for test item review, replacement, and new test items
• Sharing information with other facilities.

3.4 Selection of Test Format

There is no single test format for all situations. A format appropriate in one environment may be less appropriate in another. Each format has its advantages and disadvantages. Test quality depends on the quality of the learning objectives and the consistency between these objectives and the test items. The test developer may consider the following factors when developing tests.

Facilities Available

If time permits, the actual job environment may be used to perform the test. Ideally, training environments are divided into "classroom," "laboratory," "simulator," and "OJT," with each environment using the most appropriate test format.
Number of Trainees

The number of trainees that take a test can impact on the format chosen for the test. A key advantage of certain formats is quick scoring. If a test is used for a large number of people, this may be the best choice. However, quality should never be sacrificed for quantity.

Time

Essay tests generally require more time to administer and score. Essay tests may require an hour to administer four questions, while four multiple choice questions can typically be completed in a few minutes. The length of a written test should not exceed the number of test items which could be answered in two hours by the average trainee. This may require assembling several tests for a given instructional area. Time is also a factor in the administration of performance tests. It can easily take several hours to set up and administer a performance test on a simulator or in an on-the-job location.

Before tests can be developed, the appropriate test format should be selected. There are three basic formats:

- Written tests
- Oral question tests
- Performance tests.
4. WRITTEN AND ORAL TESTS

When written and oral tests are designed and developed, several decisions should be made early in the process. These decisions include:

- Specific learning objectives to be tested
- Format for the test
- Amount of emphasis each test item receives
- Number of items on the test
- Time allowed for the test
- Statistical properties of test items such as difficulty and discrimination, where appropriate.

4.1 Open Reference Test

Open reference or open book testing is when the reference, or a sufficient subset of the reference, is provided to the trainee during administration of a test. The test developer should determine which references and their applications are necessary after reviewing the learning objectives and the test specifications. While the open reference test is essentially no different than other written tests, there are several points to consider when using this method.

Ensure that the trainees are aware the test will include an open reference section as well as what references will be made available to them. Listing specific references may not be necessary; however, the references and job aids should be made available during testing consistent with the conditions stated in the learning objectives. This step is important because trainees need to know what will be expected during testing (i.e., using references rather than memorizing them).

Administer all closed reference test items separately and prior to the open-reference test section. This ensures that the trainees do not find so-called "giveaway" answers in the references.
Allow sufficient time for the trainees to complete the open reference questions. The more familiar trainees are with the references, the faster they can complete the items. However, be cautious the test does not become a time test. Unless time is a crucial factor in the task, it should not be made a part of the test.

4.2 Test Specifications

Test specifications are a blueprint, or plan, that clearly defines the scope and content of the test. It is the documentation for the decisions made in the initial planning stages. Just as it is important to develop learning objectives before instruction is planned, it is necessary to develop test specifications prior to test construction.

The development of test specifications is a vital step in the testing process. Test specifications provide two important checks on the entire test mechanism. They are:

- An explicit, documented link between each test item and a learning objective that is verified to be relevant, important, and based on the task
- Consistency in the way tests are developed at a facility.

Consistency will assist in reducing biases in test content due to instructor likes and dislikes or the changing of personnel at the facility. The process ensures all decisions for job placement are based on trainee performance on the same body of knowledge and ability, even though specific topics covered on individual tests may differ.

Developing Test Specifications

Since learning objectives complete with action statements, conditions, and standards already exist, the major portion of test planning is accomplished. What remains is to determine which objectives will be covered in the test, how many items will be included, and which test items are of relative importance. When developing test specifications for exams, it is important to recognize that the knowledge and skills for all learning objectives must be tested at some point in the training.
Table 1 shows test specifications developed from a list of learning objectives. The objective statements indicate the type and level of performance expected of the trainee. The instructor should select the objectives that will be tested on a given exam and establish the relative emphasis each learning objective receives.

Table 1. Test Specifications.

<table>
<thead>
<tr>
<th>Objectives for Training</th>
<th>Testing Emphasis (Item weight %)</th>
<th>Objectives to be Included in Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Area A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>II. Area B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>III. Area C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

As Table 1 shows, Objective III.2 is given twice as much weight on the test as III.1 and five times as much weight as III.3. These different weights are based on the objectives' comparable importance to success in job performance and should reflect the relative time spent on the objectives during the course of the training program. There are no preestablished rules for determining the specific weight assigned to various cells of test specifications. However, the objectives that represent task elements that are critical to the successful accomplishment of the task must be tested and those test items can not be missed. The test developer should obtain input from other trainers, from subject matter experts (SMEs), and from facility operations management and supplement this with his/her own prior experience. Trainees will expect the testing emphasis to be comparable to the emphasis stressed during training, and this should be the case. Learning objectives can be assigned greater emphasis by increasing the number of test questions for those objectives.
Table 1 further shows that Objectives I.3, II.2, and II.4 do not appear in this test. This is because they were covered in previous tests, will be covered in later tests, or can be tested in conjunction with other objectives. All learning objectives must be tested at some point during the training (but not necessarily on the final examination) or consideration should be given to their importance to the overall objective of the specific subject area. That is, if it is not considered important enough to be tested, it most likely is not important enough to be included in the training program.

The completed test specifications (test outline or sample plan) provide the test developer with a list of learning objectives upon which to base test questions.

4.3 Test Construction

The actual test is constructed following test design and test item development. Test construction requires the test developer to establish the test layout, assemble the test items, prepare the answer key, and write test directions. Test construction must be completed before implementing the training program.

Test developers should construct tests to some predetermined standardized appearance. The layout and source for this appearance is not as important as maintaining consistency for all of the facility’s tests. This consistency of appearance has several advantages. One advantage is minimizing trainee stress by providing a layout trainees are familiar with; test day is an inappropriate time for introduction of a new test format or layout. Another advantage is improved reliability. Inherent reliability is based on the consistency or dependability of test results. Trainees should be tested in a similar manner from test to test. This involves similar test lengths, consistent grading and scoring, use of the same construction guidelines, consistent coverage of topics, familiar test item formats, etc.

Facilities should have procedures in place that establish the format and layout of their training program tests. Tests are assembled using the following general guidelines.

- Select the appropriate test items based on the test specifications.
- Prepare the test key when the test is constructed.
• Indicate and be consistent with point allocations for each answer in regard to the importance of the learning objective that the test item is testing.
• Assign the number of questions per content area that reflects the appropriate emphasis.
• Change the tests' content from one test to the next so they are not compromised.

4.4 Test Layout and Assembly

The test should be assembled in a logical and easily understood format and should follow conventional rules of order for the test items.

Written tests should include typed or printed test items (no handwritten tests) and should be reproduced so each trainee has a test. Writing the questions on the board or stating the questions orally invites misunderstanding. An oral examination is not meant to be a written test given orally; rather, it is a unique situation requiring two-way communication.

The test should be clearly labeled. The course, test title, associated unit of study, administration date, and test form should be stated on the test. If the test is to have trainee responses written on it, put this identifying information on a cover page where the trainee's name, employee number, or other required information is entered. The preferred arrangement of test items is to group:

• All items using a common body of supporting information (e.g., diagram, table, or scenario) even if test item formats must be mixed
• All items of the same format
• All items dealing with the same learning objective
• Items from least to most difficult.

Some tests consist of only one format, but most tests contain a variety of formats. While using only one format has the advantage of simplicity and clarity in giving only one set of directions, it is more difficult and time consuming for the test developer to force all questions into one format. There is nothing wrong with a variety of formats; however, to
keep the test responses ordered from simple to complex, the following order of test items is suggested:

- Multiple choice items
- Matching items
- Short answer items
- Essay questions.

When a diagram, drawing, or block of information is used with a test item or items, place it above or below the test question if possible. If it is too large to go on the same page as the test item, it should be attached as the next page in the test so the trainee does not have to search for it. The test item should state the location of the diagram, drawing, etc., if not on the same page. Avoid splitting a test item’s material between two pages, but if one is split, present all of the item alternatives on the same page. Keep matching items together on the same page.

Consideration should be given to placing only one question per test page. This minimizes the administrative burden on the trainee, improves test clarity, and reduces the chances of the trainee inadvertently failing to answer a question.

4.5 Written Test Administration

Test administration has an important effect on the usefulness of test results and requires control. The instructor should ensure that a suitable environment is established, consistent and clear test directions are given, and proper supervision is present for the entire test.

Establish Environment

Effective testing environments require attention to the physical qualities of the test setting and to the trainees’ emotional climate. High noise levels, poor lighting, lack of ventilation, excessive heat or cold, and frequent interruptions will lower trainee test performance. The instructor should optimize, to the extent possible, the conditions for testing. This may be as simple as scheduling testing in the morning if the classroom becomes too hot in the afternoon.
While most instructors are aware of the physical testing environment, many do not give sufficient consideration to the emotional environment they establish. The testing environment should be conducive to effecting testing. Making the purpose of the test clear and emphasizing the need for accurate test results can create a good emotional climate, which is important in building motivation, reducing anxiety, and improving communications.

Test Directions

Each test should have clearly written directions. These directions should tell the trainee what to do, how to do it, and how to record the responses. General directions should be given for the test, with specific directions given for each section, subpart, and item format. Though the instructor should orally present the directions prior to the start of the test, the written directions should be clear enough to enable the trainees to complete the test without any further instructions. The trainees should be given time to read the instructions and ask questions before the test is started.

Questions that require mathematical calculations pose a unique problem. Suppose a trainee performs a complex equation using a calculator in one step, while the answer key breaks down the calculation into individual steps. The resulting answer will be different from the answer provided in the answer key, since the answer key will break the answer down into individual steps. Each step is then calculated separately and rounded to a significant digit. Rounding of answers (or individual step answers) can cause an otherwise correct answer to be marked as wrong, because the answer key specifies a discrete number. Therefore, precision or accuracy of answers needs to be addressed in the test directions and in the answer key.

Inform the trainees that they may ask questions during the test. Avoid giving individualized assistance by providing any clarifying information from individually asked questions to the entire group.

Trainees should be told the value of test items and how they will be scored. The trainee should know whether partial credit will be given, what degree of precision is required, whether units must be identified (such as psi, ohms, rem), and, for calculations, if work must be shown. Time limits should be stated.
When developing the instructions, keep them clear and concise. Make important points stand out by using a different size type, placing the type in bold, or by underlining. Have an independent review done of the directions to check for inconsistencies or potential misunderstandings. Consider including sample items with the directions when introducing difficult or unusual item formats. Clear directions will help maintain the reliability and validity of the test. Appendix A provides an example of test directions.

Test Monitoring

Effective test monitoring will ensure that everyone has the same opportunity to understand and answer the questions properly. It is important that the test results provide an accurate indication of a trainee's performance.

Training procedures should provide definitive guidance for test monitoring. A clear policy on academic honesty should be established at the beginning of any training program and should be enforced throughout the program. The single best method is to observe trainees carefully during testing. Some training department procedures require that each trainee sign an affidavit, usually on the test cover sheet, stating the work is the individual's own. This has some deterrent value; however, it should not be allowed to replace other useful methods. These include spacing trainees during testing, using multiple test forms, and revising the test for each session.

4.6 Oral Test Administration

When oral examinations (as opposed to oral questioning) are used, the test questions should be developed prior to administration. The acceptable answers should be recorded in advance along with the applicable references and bases for the questions. This is called pre-scripting and is done to ensure the examination is relevant and valid and provides for consistent tests. The trainee responses should be recorded for evaluation and documentation. The basic procedures for oral examination development are not significantly different from those applicable to written tests. However, the procedure for administering an oral examination has certain key considerations that should be followed.
The number of persons present during an examination should be limited to ensure test integrity and to minimize distractions to the trainees. If a task is performed as part of the examination, a qualified person should be present. Other trainees should not be allowed to witness an oral examination. Oral examinations are not to be used as training vehicles for future trainees. Other instructors may be present either to witness the oral exam as part of their training, or to audit the performance of the instructor administering the test. Others may be allowed to observe oral examinations if (a) the instructor approves the request to observe the test, and (b) the trainee does not object to the observer’s presence.

An instructor should brief the trainee prior to beginning the oral examination. Appendix B contains a sample checklist that can be used to assist the instructor when conducting this briefing.

While administering the oral examination, the instructor should allow and encourage the trainee to draw diagrams, flow paths, or other visual representations as appropriate. This allows the trainee to better express himself or herself when providing answers or explanations to the instructor. These drawings should be kept with the test documentation. Trainees should be encouraged to use facility forms, schedules, procedures, etc., to answer the questions. The supporting material should be retained by the instructor to provide additional documentation to support a pass or fail determination. The instructor should take sufficient notes during the test to facilitate the thorough documentation of trainee strengths and weaknesses. The instructor should be able to cross reference every comment to a specific subject area question.

The instructor should review and become familiar with the examination material. Prior to the administration of the oral examination the instructor should review any scenario questions with other instructors and discuss the required procedures and special circumstances, etc., related to the scenarios.

The instructor should minimize conversation during the examination. Limit discussions with the trainee during the test to maintain some degree of formality and to avoid distracting the trainee.
Test scoring methods will vary, depending on the purpose of the test. The most common methods are self scoring, hand scoring, machine scoring, and unstructured test scoring.

Self-scoring is often used for tests where the results will not be collected by the instructor. These tests are primarily self-instructional and inform trainees of their current abilities. Self-scoring is also useful for personality, interest, or career planning inventories. Answers can be provided at the end of the test, or a variety of techniques can be used to disclose the correct responses. A variation on self-scoring is to have trainees exchange papers and score them in class. This saves the instructor time and provides immediate feedback for both the instructor and trainee.

Hand-scoring is the most common scoring technique. Usually a scoring key is created on a strip of paper and placed next to the test form, or a blank test form is completed with the correct answers. For multiple choice test items, separate answer sheets can be used. An answer key can then be created by punching out the correct answers. The resulting overlay allows rapid scoring. The overlay should be made of a transparent material (such as an overhead transparency) so the instructor can easily detect omitted or multiple responses.

When a large number of structured response tests are to be scored, machine-scoring may be useful. In addition to saving time, the ability to enter the results directly into a computer test data base provides many other benefits. Trainee records can be updated, test analysis data can be automatically computed to aid in test refinement and program evaluation, and reports and records can be produced easily once the initial programming is complete.

Many tests are unstructured response format. These tests cannot be machine scored but should be reviewed individually by the instructor; thus, scoring unstructured response questions consumes a great deal of time and poses some unique challenges. It takes diligence on the part of the instructor to prevent these test items from becoming subjective test items. To minimize the subjectivity in scoring any unstructured response items, several guidelines should be followed.
The instructor should compare the answer key to several of the trainees' responses to a question. Some trainees may take a different approach from what the answer key anticipated and still be correct. If so, an alternate correct answer will need to be added to the answer key. If the key is changed, all tests should then be regraded using the revised standard.

Periodically review the answer key. It is easy for an instructor's standard to change after several tests are scored. Reviewing the answer key will help protect against distraction from the standard. Also, by occasionally reviewing those items scored earlier, the instructor can confirm that the standards are being applied consistently. Even when applying these measures, some inconsistency is inevitable. One problem is how an item response is graded following several good or several poor responses. The tendency is to score the item low if it follows several high scores, or to score the item high if it follows several low ones. Shuffling the tests between review of test questions, while not eliminating the problem, allows these effects to be offset by random sequencing.

Score each item separately. Each test item should be scored for all tests before the next item is scored. Scoring one item at a time allows the instructor to concentrate on just one standard. This increases consistency when assigning points or categorizing items.

Avoid interruptions when scoring responses. The bias an instructor has toward an essay item may change. If a bias exists it should be consistently applied to the responses of all trainees. (For example, an instructor may be irritated one afternoon and calm the next morning) By scoring all response sets at once, if a bias exists, its effects on trainee scores will be consistent.

Provide comments and make corrections on the actual test. A trainee who does not receive full credit for an answer will want to know why. Appropriate comments can explain the score received. If trainees are to learn from their mistakes, they should be told what errors were made and how to correct them. Another value in providing comments is the ability to tally the various comments and analyze the results from test item improvement.
5. PERFORMANCE TESTS

Performance tests measure task performance in the job environment and serve as a mechanism for determining task qualification in the facility. A performance test consistently and systematically evaluates the ability of the trainee to perform a task. Asking trainees to describe proper welding techniques is not a performance test; asking trainees to make a proper weld is. The performance test is not a training instrument; rather it is a testing tool that ensures consistent performance evaluations. A performance test should test both the knowledge and practical requirements that were derived during the analysis of the task.

The steps of a performance test come from the elements of a task. The Training Evaluation Standard (TES) provides the basis for the development of objective-based training materials, and maintains the consistency in the testing of trainee performance. The TES identifies the elements (procedural steps), knowledge, and skills necessary to perform the task. It also identifies the initiating cue that prompts or signals the trainee to begin the task, identifies the terminal and enabling objectives, the conditions under which actions occur, and establishes standards that measure satisfactory performance of the elements, thus the task. A more detailed description on the use of a TES is available in DOE Training Program Handbook: A Systematic Approach to Training.

5.1 Developing Performance Tests

Developing performance tests involves identifying economic and other limitations, determining the best instructional and testing methods, and constructing a test that provides the most effective measurement of the task. The task statement, the TES, and the references should be used when developing a performance test. The task statement identifies the task to be evaluated by the performance test. The TES identifies the elements of the task and other supporting information needed for competent performance of each element of the task. The references identified in the TES should be available to the developer when writing performance tests. The developer may choose to make provisions for references, tools, and equipment that are supplied at the time of the trainee test or direct the trainee to gather these resources as part of starting the test.
The following steps should be performed when developing a performance test. The test development process should:

- Determine the testing limitations
- Determine the elements to be tested
- Determine the conditions and the standards
- Determine the method of accomplishment
- Construct the performance test
- Determine the scoring procedures
- Pilot the performance test
- Approve the performance test.

Determine Testing Limitations

The first step in developing a performance test is to review the task and determine the potential testing limitations. Testing limitations are those factors that can have an impact on the development or the conduct of a performance test. These may include availability of time, work force, equipment, and resources. If performance of a task would require more time than is reasonable, the performance test should be developed using only the critical task elements. Work force availability can also impose limitations on task performance. These constraints occur when more than one individual is required for task performance.

Situations occur when equipment or facilities will not be available to support the test. Cost can also affect performance tests. The cost of performance test administration and its effect on consumable repair parts should be kept within reasonable limits. Many infrequently performed tasks cannot be performed for training or testing purposes in the job environment. Safety is another factor to consider. If the testing of certain tasks would impose unreasonable demands on the personnel, facility or equipment, test those tasks using simulation as the method of accomplishment.
The items to be considered when determining the need for simulation or some other method of accomplishment in performance testing are summarized below.

Downtime
Effect of task performance on the equipment readiness and efficiency.

Damage
Potential damage to plant equipment and personnel.

Cost
Cost of using plant personnel, equipment, and materials.

If any limitations result in a change of content in an established test, management, administrative, and instructional approval should be required for the change.

Determine Elements to be Tested

The elements of the task represent an important design consideration. The developer should determine which elements can be tested realistically and should focus on elements that have the greatest number of skill and knowledge statements. When limitations make performing the task during the performance test unrealistic, task elements should be examined. Elements that include important decision points are predictors of successful performance of the task. If they can be tested realistically, they should be included in the performance test.

A critical task element (C) is defined as any element of the task that is deemed crucial to the satisfactory performance of the task. Task elements such as removing interference, obtaining the procedure, and cleaning the job site are typically non-critical task elements (NC). Non-critical elements are generally administrative controls and tend to be generic to other tasks. The critical/non-critical designation becomes important in the scoring and evaluation criteria. To determine if an element of a task is critical, consider the following guidelines. An element may be critical if its omission or improper execution:

- Causes or could cause damage to any system or component to the extent that it prevents the system or component from being immediately available for its intended purpose.
• Causes or could cause a serious injury or hazard
• Results in incomplete task performance
• Violates security
• Results in an out-of-tolerance condition or measurement which prevents the equipment from meeting facility procedures or specifications
• Violates a standard maintenance procedure such as improper use of test equipment or hand tools, etc. (this does not include performing procedure steps out of sequence)
• Causes excessive delays attributable to insufficient job knowledge or improper planning although the task was successfully performed
• Results in delay(s) due to unnecessary troubleshooting, removal or replacement of components or rejection of serviceable equipment.

There are some task steps that must be performed in the proper sequence. These should be identified on the checklist for the instructor and the trainee. These steps can be marked with an "S" to indicate they must be performed in sequence.

Determine Conditions and Standards

After testing limitations and element designations have been determined, identify the conditions and standards needed for task performance. Ideally, the test developer should duplicate the cues, conditions, and standards of the actual task; however, some compromise may be necessary. For tasks with multiple conditions and branching decisions, multiple performance tests may have to be developed.

Conditions are prerequisite requirements that exist for successful task performance. Conditions define facility conditions and include information and resources available to the trainee during task performance. If limitations prevent using all conditions identified in the TES, a sample should be used that best assesses the ability of the trainee to perform the task under actual conditions. Task conditions may require modification if the task cannot be performed under actual conditions. For instance, conditions could include high radiation areas and other environmental concerns.
Performance tests include standards of measurement that are applied consistently in evaluation of task performance. Standards may relate to the process, the product of performance, or a combination of both. Process standards are step-by-step procedures that must be followed, usually without deviation. Product standards prescribe output (the product of performance) and criteria for judging acceptability of the performance (i.e., surface machined to a tolerance of ± .002”).

Task standards should be transferred directly from the TES to the performance test whenever possible. However, limitations in the testing environment may require a best approximation of the job standard used during the performance test. Typically the conditions and standards for the elements of a task are implied in the conditions and standards of the entire task. However, if an element has a unique condition and/or standard that is not implied, then it should be stated with that element.

Determine Method of Accomplishment

Each task that is tested should have a designated method of accomplishment (MOA), or level of performance, which dictates how the trainee is to demonstrate the task to the instructor. The MOA is identified for a task and should be identified for the individual task elements so that each trainee is tested in the same manner. There are four possible methods of accomplishment.

- **P** Perform the specified task using approved procedures and observing all applicable safety and administrative requirements. This includes a thorough discussion (usually prior to performing the task) addressing safety implications, elements involved, the effects on associated equipment or systems, and abnormal situations which may arise while performing the task. This method of accomplishment is the most desirable level for performance testing.

- **S** Simulate performance of the specific task. Using approved procedures, "walk through" the task and simulate all actual manipulations (valves, switches, tools, etc.) an employee would perform. Describe applicable safety and administrative requirements and the parameters (meter readings, charts, measurements, etc.) an employee would observe/monitor during actual performance of the task. Conduct
the same discussion as required for a perform signature.

O Observe an individual performing the specified task. Conduct the same discussion as required for a perform signature.

D Discuss the specified task using applicable procedures, piping and instrumentation drawings, blueprints, etc., including the discussion as required for a perform. Demonstrate knowledge of the task by describing the manipulations required and the parameters that may be expected to change. This method of accomplishment is the least desirable for performance testing.

Simulate, observe, and discuss should be used only when perform is not feasible, such as in a high radiation area. The trainee should always demonstrate each of the critical task elements by the designated method to successfully demonstrate the task. For example, if the task MOA is "P," the trainee must actually perform each element designated as "critical." The trainee cannot simulate nor discuss those items. The non-critical elements could have a discuss MOA designation to save testing time and allow concentration on the critical items. Non-critical elements need not be included if focus is required on the critical elements to save time.

Construct the Performance Test

Based on the previous information the performance test can be constructed. A performance test typically consists of major items which include:

- A performance learning objective (task statement) indicating the action and the object
- Condition(s) under which the action is to be accomplished
- Standard(s) against which performance is to be measured
- References
- Method of accomplishment (perform, simulate, observe, or discuss)
- Elements (at least critical elements, and non-critical if desired) to be accomplished with the MOA and references indicated
• Knowledge requirements which consist of the cognitive items supportive of the practical requirements
• Practical requirements which consist of the task elements and their related standards.

The questions used for the knowledge requirements should be placed within the evaluation standard to indicate when they are to be asked. Directions should require the instructor to read the questions exactly as written. Space should also be provided to record the trainee's response (if the correct response is not given). The correct answer should always be included with the question.

Additional information from the TES may be included in the performance test such as identifying the task’s work group and other information as appropriate. Appendix C is an example of a checklist that can be used when constructing a performance test.

The performance test should not be developed verbatim from a procedure. It should summarize the procedure and be designed to evaluate critical aspects of a particular task. If a task requires specific values such as torque and tolerance, they should be stated in the standard for the task or element. Hold points should be inserted at desired locations in the performance test to allow the instructor to grade the trainee's performance of the previous steps.

The performance test package should consist of an administrative section, instructions to both the instructor and the trainee, a guide for the instructor to use for scoring, a trainee guide, an optional data sheet for trainee use, and a section used for documentation (e.g., a check-off list). Appendices E and F are two examples of performance tests.

Develop Scoring Procedures

The developer should create an evaluation instrument that the instructor can use to accurately measure the trainee's performance of each step of the performance test. The evaluation instrument must measure the trainee's ability to demonstrate the task.
When the performance test is constructed, scoring procedures are developed. A detailed, step-by-step description of required performance provides an effective scoring procedure for some tasks. Action steps or elements required in the performance test usually are prepared in checklist form, and the trainee is required to follow each step without deviation. For other tasks, the product of performance (i.e., a tangible result) should be measured. In developing a scoring procedure for this type of performance test, scorable characteristics must be defined to distinguish clearly between satisfactory and unsatisfactory performance.

Scoring methods must adhere to administrative and instructional guidelines and reflect the evaluation standards. If an evaluation standard is "without error" a yes/no checklist should be used. If the standard implies some range of acceptable performance, a rating scale may be used. However, rating scales introduce greater subjectivity and are more difficult to use, to interpret, and to back up than a yes/no checklist. If sequence is important, identify this on the performance test and provide proper scoring guidance.

Establish cutoff scores to meet the performance standards. Percentages are the least preferred method. Failure of a performance test should be determined by the failure of any critical step or the failure to follow required sequences. The cutoff score for any behavior should be based on a level of performance that is achievable by the average person.

All methods of scoring should be consistent with policy, procedures, specifications, and needs. The method should also adhere to instructional guidelines, such as testing the objectives, and should clearly distinguish between satisfactory and unsatisfactory performance.

Piloting the Performance Test

The purpose of piloting a performance test is to ensure that the "bugs" have been worked out of the test. The pilot should be conducted under the conditions required for actual job performance or the same conditions under which the trainees will be tested.
The pilot should have two evaluators monitor the performance of a single individual. This should be a simultaneous but independent evaluation. If the scores (sat/unsat) are different for any of the steps, a reliability problem exists. When conducting the pilot the evaluators should look for problems or deficiencies such as:

- Questions asked by the trainee
- Equipment requirements
- The ability of the trainee to perform the task
- Unclear directions to the trainee
- Unusual conditions or problems beyond your control that affect the outcome of the test
- The effectiveness of the scoring method used
- Time considerations.

Approve the Performance Test

After the performance test has been piloted, reviewed, and corrected from feedback, it should be approved. The test package should be signed and dated by both facility and training representatives. Appendix D is an example of a review checklist for a performance test.

5.2 Test Administration

Test administration has an important effect on the usefulness of test results and requires control. The instructor should ensure that a suitable environment is established, clear test directions are given, and proper supervision is present for the entire test.

Establish Environment

Effective testing requires that the physical qualities of the test environment and setting that the trainee performs within are satisfactory. High noise levels, poor lighting, lack of ventilation, excessive heat or cold, adverse safety conditions, and frequent interruptions will lower trainee test performance. Prior to the performance test, the instructor should ensure that the conditions of the test location are adequate.
Test Directions

Prior to conducting a performance test the instructor should provide the trainee with directions and an overview of the performance testing process. These directions should provide the trainee with clear and complete instructions as to what the trainee will be allowed to do, and when the instructor will allow the trainee to do it. The instructor should explain under what circumstances he/she will stop the trainee if conditions such as safety of personnel or equipment arise.

Conducting the Performance Test

The completion of the task is not the only indicator of the competence level of the trainee. It is important to observe the methodology as well as the outcome of the performance test. Some typical questions that the instructor should consider when observing a performance test include:

- Were the tools used correctly and in the proper sequence
- Were the necessary reference materials obtained
- Were non-critical steps performed in the proper order
- Was the trainee confused by any portion of the performance test
- Was the equipment manipulated in a deliberate and timely manner
- Was the trainee aware of equipment status (e.g., did he/she recognize when a pump was running or when a valve was open)
- Were safety rules observed when performing the task?

Complete testing of the knowledge and skills requires the instructor to question the trainee during the performance test; however, the instructor should not ask distracting questions. All questions should be related to the task. The instructor may ask the trainee to "talk through" the task as he/she performs it. This technique reduces the number of questions the instructor needs to ask and allows the instructor to stop the trainee before he/she makes a serious mistake. The questions may be written in the evaluation standard (preferred method) or generated by the instructor during the performance test.
During the conduct of a performance test the instructor must also be a safety monitor in addition to his/her role as evaluator. The instructor has the responsibility of stopping the performance test whenever personnel injury or equipment damage can occur, public health or safety is affected, or the trainee deviates from an approved procedure.

Evaluating the Performance Test

Scoring methods should be identified and should be closely related to the evaluation standards. Trainees should be evaluated on how closely their performance meets the standards. Some rating method examples are pass/fail, sat/unsat, yes/no, and 80% correct.

Debriefing the Trainee

At the completion of a performance test the instructor and the trainee should conduct a detailed review of the trainee's performance. The instructor should tell the trainee if he/she passed or failed the performance test. The review should be conducted immediately while the events are fresh in the mind of both the instructor and the trainee. The instructor is responsible to record the results accurately before, during, and after the performance test. Accurate recording of results allows the testing process to be evaluated, ensures fair grading, and allows for monitoring the results to ensure reliability.
Because tests are used to qualify trainees to do a job or task, it is important that they are developed properly. If tests are constructed systematically and administered correctly, they will have a high degree of reliability. The quality and effectiveness of tests should be continuously monitored and improved where necessary. Analysis of test results provides important input to the quality and effectiveness of tests. Whereas most instructors and test developers are not required to perform complicated statistical analyses, an understanding of some basic concepts is beneficial in interpreting and refining the testing process.

6.1 Reliability

Reliability is functionally defined as the consistency between two separate measurements of the same thing. If a test gives perfectly consistent results, it would be perfectly reliable. Reliability is generally not a problem with performance tests as long as conditions in the evaluation situation remain constant. Reliability can be a problem with written tests because test item construction can be difficult. Reliability can be affected by ambiguous test items, multiple correct answers, typographic errors, adverse testing conditions, interruptions, limited time, and complicated answer sheets. Trainee readiness and scoring errors also affect test reliability.

The following examples illustrate how reliability or unreliability may be indicated as tests are analyzed.

Example: Ten trainees were given test A on Monday and then again on Tuesday. Assuming that nobody forgot anything overnight, the Tuesday test results should be exactly the same as the Monday test results if test A is reliable.

Any significant difference would indicate test unreliability since nothing changed from Monday to Tuesday. This is a form of test-retest reliability. The time period for this type of reliability is variable. Longer time periods generally result in greater differences in test results, but long time periods can determine the long-term stability of the test.
Example: Ten trainees took a test and 9 of them missed question #5. Question #4 was missed by nobody but was testing an item very similar to that covered by question #5.

Question #5 may be unreliable due to poor wording, unclear answers, a typographic error that makes a wrong answer look correct, etc. This is a form of alternate question reliability.

Example: 8 of 10 trainees who missed question #7 chose answer (b). Does answer (b) look too similar to the correct answer? Does the lesson plan support the correct answer?

The above example could indicate the use of a method of testing known as key word and tricky phrase testing. This type of testing causes the trainee to memorize and recall only key words and tricky phrases to pass the test instead of requiring the trainee to learn the material; thus it is a poor method to use.

Test items with poor reliability are easy to recognize. If trainees that are equal in knowledge or ability have widely varying test scores, the test or test item may be unreliable. Or, if the same trainee is tested twice on the same test or test item within a short period of time and passes once and fails the next time, the test or test item may be unreliable. In both of these cases the reliability should be questioned and the test or test item should be carefully evaluated.

6.2 Validity

A valid test must measure exactly what it was intended to measure. A test can be reliable but not valid, or valid but not reliable. A paper and pencil test can be reliable in measuring knowledge of certain welding fundamentals but not valid for measuring welding skill. Establishing the validity of tests can be a complicated and time consuming process. Validity can be improved by:

- Ensuring a good analysis of tasks has been conducted
- Ensuring that knowledge and skill requirements have been identified
• Ensuring that learning objectives for both knowledge and skills are based on task requirements
• Identifying type of performance dictated by objectives (cognitive, psychomotor, affective)
• Ensuring action verbs used in objectives measure what they were intended to measure
• Designing test specifications to ensure that objectives are covered adequately
• Discussing the test with SMEs, supervisors, and training specialists
• Piloting the test or sample test items with SMEs and trainees
• Comparing test results to actual job performance
• Ensuring that the test and test items are changed to be consistent with revised job requirements

Content Validity

Content validity is the simplest method to assess whether a test is valid. Establish content validity by comparing the test items to the learning objectives. No statistical calculations are used to establish content validity. If subject matter experts agree that the test items measure their respective learning objectives, the test can be considered valid. The usefulness of content validity is subject to the quality of the analysis and the subsequent learning objectives as well as the thoroughness of the SME review of the test items.

Concurrent Validity

Concurrent validity of a test is when one test compares favorably with another, already validated test. If there is already a valid measure (i.e., nationally recognized entrance exam) of what is to be tested, determine the degree of association between the results of the preestablished test and the test to be validated. To the extent that they are related, there is an established level of concurrent validity. A statistical analysis is required to establish a level of concurrent validity. Information on statistical analysis to determine concurrent validity can be found in several commercially available textbooks on statistics.
Predictive Validity

Predictive validity is when trainee scores on one test can be used to predict success on a second test after a given time interval. Establishing predictive validity is accomplished in a similar manner as establishing concurrent validity. Statistical analysis is used to determine predictive validity as long as both tests are scored on a pass or fail basis and the tests are separated by a substantial period of time.
This is a test of your radiological protection knowledge. If you score 80 percent or better on this exam, you will be excepted from the classroom portion of radiological protection training.

Do not mark on the exam booklet. Place all answers on the answer sheet. Use scratch paper or the back of your answer sheet for any calculations.

Decide which is the best answer from among the alternatives, then mark the appropriate space on the answer sheet. There is only one correct answer for each question. Your answer sheet will be scored mechanically, so it is very important you mark your answers correctly.

1. Mark only one space for each question on the answer sheet.

2. Use only a No. 2 lead pencil on the answer sheet.

3. Make sure your mark fills the space, but does not go outside the space.

4. If you change your mind, erase your first mark completely and make another mark.

5. Keep your answer sheet clean; stray marks may be counted as errors.

6. Since all unmarked questions will be counted as wrong, answer all questions even if you are uncertain which answer is correct.

7. If there are questions during the examination, raise your hand and the proctor will come to you.

If you have any questions, ask the exam proctor now.

You have 45 minutes to complete this exam. If you finish early, check your work. Be sure that you have answered all the questions.

You may begin.
APPENDIX B
BRIEFING CHECKLIST-ORAL EXAMINATION
APPENDIX B

BRIEFING CHECKLIST-ORAL EXAMINATION

1. Trainees are tested at the level of position responsibility for which they are being qualified.

2. Facility equipment should not be operated without permission from appropriate authority. Nothing the instructor says or asks will be intended to violate that principle.

3. If clarification of questions is needed by trainees during the tests, there should be no hesitation to request that the instructor reword or clarify the question.

4. The instructor will be taking notes throughout the test to document trainees' performances. Frequently an instructor will stop questioning for this purpose. The amount of note-taking is not dependent upon the trainee's level of performance. The instructor should document satisfactory as well as less-than-satisfactory performance.

5. There is no specific time limit for the oral examination. The instructor will take whatever time is necessary to cover the areas selected, and in the depth and scope required. Here the instructor may also discuss the scope and estimated length of the examination.

6. The instructor should not reveal the results of the oral examination at its conclusion.

7. If trainees feel the need for a break during the oral examination, they should request this from the instructor.
APPENDIX C
PERFORMANCE TEST CONSTRUCTION CHECKLIST
APPENDIX C

PERFORMANCE TEST CONSTRUCTION CHECKLIST

Purpose of the test:

1. Does the test require a skill level that is appropriate? [] N/A [] YES [] NO
2. Is the purpose of the test clearly stated? [] N/A [] YES [] NO
3. Are the objectives of the test clearly stated? [] N/A [] YES [] NO
4. Does the test have a clear relationship with the trainee's job or task duties? [] N/A [] YES [] NO

Administrative Guidelines:

1. Does the test include a segment to help orient the trainee to the requirements of the test? [] N/A [] YES [] NO
2. Have the administrative procedures of the test been clearly spelled out? [] N/A [] YES [] NO

Scoring and Standards:

1. Have the test's scoring criteria been standardized? [] N/A [] YES [] NO
2. Does the test clearly define scoring procedures? [] N/A [] YES [] NO
3. Can the scoring rules be quickly applied by the examiner? [] N/A [] YES [] NO
4. Has the grading criteria been made as objective as possible? [] N/A [] YES [] NO

Instruction Section:

1. Does the test contain a complete set of instructions for the trainee? [] N/A [] YES [] NO
2. Do the instructions address what is expected of the trainee for Perform, Simulate, and Discuss items? [] N/A [] YES [] NO
APPENDIX C

PERFORMANCE TEST CONSTRUCTION CHECKLIST

3. Do the instructors address task performance sequence, critical steps, and results of failure to comply with safety precautions? [] N/A [] YES [] NO

Tools and Equipment:

1. Have all required equipment and materials for the test been listed? [] N/A [] YES [] NO

2. Has their use been specified at the appropriate level of detail? [] N/A [] YES [] NO

Performance Steps:

1. Does the test provide a complete and clear listing of all the steps required to perform a task? [] N/A [] YES [] NO

2. Are critical and sequential steps identified? [] N/A [] YES [] NO

Conditions and Cues:

1. Have all initiating and terminating cues been described on the test? [] N/A [] YES [] NO

2. Have all environmental conditions been described on the test? [] N/A [] YES [] NO

3. Have all equipment conditions been described on the test? [] N/A [] YES [] NO

Prerequisites:

1. Does the test clearly state prerequisite knowledge, experience, and skills of the trainee? [] N/A [] YES [] NO
APPENDIX D
PERFORMANCE TEST REVIEW CHECKLIST
This checklist is designed for use by the test developer when reviewing a performance test with technical experts. The checklist contains questions which can be asked and checked off as each step in the review process is completed.

Technical accuracy of items:

1. Have major flaws been identified and corrected? [] N/A [] YES [] NO
2. Have any task steps been omitted? If yes, is test addressing only critical elements? [] N/A [] YES [] NO
3. Have unnecessary task steps been removed? [] N/A [] YES [] NO
4. Is each task step complete? [] N/A [] YES [] NO
5. Have tools and materials been completely specified? [] N/A [] YES [] NO
6. Have performance standards been specified completely? [] N/A [] YES [] NO
7. Are the scoring criteria for the steps clear? [] N/A [] YES [] NO
8. Have all required task cautions been included? [] N/A [] YES [] NO
9. Is the scoring key for discussion items complete? [] N/A [] YES [] NO
10. Has unclear terminology been removed from task steps wherever possible? [] N/A [] YES [] NO
11. Has unclear terminology been removed from performance standards wherever possible? [] N/A [] YES [] NO
12. Has unclear terminology been removed from discussion steps wherever possible? [] N/A [] YES [] NO
DOE-HDBK-1205-97
APPENDIX D
PERFORMANCE TEST REVIEW CHECKLIST

Clarity of items:

1. Have ambiguous performance standards been corrected? [] N/A [] YES [] NO
2. Have ambiguous performance criteria been corrected? [] N/A [] YES [] NO
3. Have ambiguous responses to discussion items been corrected? [] N/A [] YES [] NO

Difficulty of items:

1. Are the key discussion items at an appropriate difficulty level with the learning objectives? [] N/A [] YES [] NO
2. Have overly difficult academic terms been removed from discussion items? [] N/A [] YES [] NO

Position of test items:

1. Do items appear in proper sequence as determined by subject matter experts? [] N/A [] YES [] NO

Weighting of test items:

1. Is weighting based on safety impact? [] N/A [] YES [] NO
2. Is weighting based on sequenced step performance? [] N/A [] YES [] NO
3. Is weighting based on precise measurement demands? [] N/A [] YES [] NO
4. Is weighting based on symptom diagnosis demands? [] N/A [] YES [] NO
DOE-HDBK-1205-97
APPENDIX D
PERFORMANCE TEST REVIEW CHECKLIST

Format of items:

1. Was a format change from perform to discuss based on step length? [] N/A [] YES [] NO
2. Was a format change from perform to discuss based on a lack of tools? [] N/A [] YES [] NO
3. Was a format change from discuss to perform based on importance? [] N/A [] YES [] NO

Task Coverage of test:

1. Does the performance test completely cover the task? [] N/A [] YES [] NO
2. If no, what areas are lacking? [] N/A [] YES [] NO
3. If no, what changes are needed? [] N/A [] YES [] NO

Duration of test:

1. Does test meet target length? [] N/A [] YES [] NO
2. If no, is test too long? [] N/A [] YES [] NO
3. If test is too long, have hands-on items been changed to discussion? [] N/A [] YES [] NO

Scoring rules of test:

1. How will partial credit be on discussion items? [] Proportional [] Intermediate [] None
2. Will violation of safety rules constitute automatic failure? [] N/A [] YES [] NO
3. Will failure to work steps in the order given on the test constitute automatic failure? [] N/A [] YES [] NO
Incorporate comments:

1. Have all discrepancies among SMEs been resolved? [] N/A [] YES [] NO

2. Has the revised test been reviewed by SMEs? [] N/A [] YES [] NO

3. Have all requested changes been incorporated? [] N/A [] YES [] NO

4. What method was used to record SME comments? [] Tape recording [] Direct copy [] Note taking
APPENDIX E
SAMPLE PERFORMANCE TEST
Sample Performance Test

Task Information

Task #: 8123506447-3
Task Title: Inspect Lube Oil Cooler (water side)
Emergency Diesel Engine

Prerequisites:
1. PMT General Course
2. Facility General Course
3. Facility Specific SE-204 Diesel Generator Course

References:
2. NMPT 801.B - Emergency Diesel Preventive Maintenance Procedure
3. NMPT Form 801 - Preventive Maintenance Report
4. NMPT Facility Plan A-804.402
5. NMPT 101.90 - System Depressurization

Approval:

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

Instructions to Evaluator:

1. This evaluation standard contains the details for the evaluation of knowledge and practical requirements.
2. Prior to administering the performance test, ensure that the trainee has completed all related training.
3. Prior to administering the performance test, read the "Instructions to the Examinee" to the trainee and review the conditions with him/her. Also, ensure the materials listed are on hand and available for use.
4. When evaluating knowledge requirements, only ask those questions listed in the Knowledge Requirements section. Compare the trainee's response with the answer provided to determine if the question is answered correctly. Failure of any two questions constitutes failure of the performance test.
5. When evaluating task performance, the trainee is expected to perform the steps in sequence. A "Sat" can only be awarded after the trainee achieves the listed standard. If a question is included with a step, it must be asked and answered before proceeding with the evaluation. Mark each step as "Sat" or "Unsat." Performing any step out of sequence, failing two or more non-critical steps, or any single critical step constitutes a failure of the performance test.
6. Coaching is not permitted during an evaluation. Stop the evaluation when actions may result in damage to personnel or equipment.
7. Ensure all the information in the Scoring/Remarks section is correct and complete and that you and the trainee have signed the performance test.
8. Notify trainee of his/her score immediately upon completion of the performance test.
Task: Inspect Lube Oil Cooler (water side) on Emergency Diesel Engine

Test ID#: 8129506447-3
Task Title: Inspect Lube Oil Cooler (water side) on Emergency Diesel Engine
Average Time to Perform: 3 Hours

Instructions to Examinee:
1. The purpose of this performance test is to evaluate your ability to inspect the lube oil cooler (water side) on the Emergency Diesel Engine. The knowledge and skills that are evaluated by this test are directly related to those that you will perform on the job.
2. Before starting, I will state the performance terminal objective, any initiating cues, and I will answer any questions you may have.
3. When I tell you to begin, you are to inspect the lube oil cooler (water side) on the Emergency Diesel Engine. I will describe the initial conditions associated with the task and will ensure that necessary equipment or resources will be available to you.
4. For each step in the task, you are to state what you will do and what result you expect to see in response to your action.
5. At any point, I may stop you and ask you questions regarding the steps, sequence, acceptance criteria, or the effects your actions will have upon the system or component with which you are working or related systems and components.
6. If you perform any two non-critical steps or one critical step improperly or perform a step out of sequence, you will fail this test. If you fail, additional training will be provided and you will be evaluated at a later date.

Personnel/Equipment Safety:
- Burn hazard
- Damage to diesel
- Danger from fluids under pressure

Tools/Equipment:
- Protective gloves, face shield, hand tools rigging equipment, lint-free rags, crow bar, gasket scraper, and gasket material.

Performance Terminal Objective:
Given that applicable references, equipment, and materials are available, inspect the lube oil cooler on the emergency diesel engine starting engine in accordance with references 1 through 5.

Initial Conditions:
- Diesel tagged out and affected portion of lubricating oil system drained and depressurized.

Initiating Cues:
- Directed by evaluator to begin.
Sample Performance Test

Test ID#: 8123506447-3

Task Title:
Inspect Lube Oil Cooler (water side)

Emergency Diesel Engine

Task #: 8123506447-3

Average Time to Perform: 3 Hours

Performance Checklist

<table>
<thead>
<tr>
<th>Action Step</th>
<th>Standards</th>
<th>SAT</th>
<th>UNSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Obtained reference</td>
<td>Trainee obtained latest revised copies of the procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Obtain equipment</td>
<td>In accordance with NMPT A - 804.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Verify diesel tagged out</td>
<td>In accordance with NMPT 101.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Verify lubricating oil and cooling water system drained and depressurized</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Disconnect oil supply and return from lube oil cooler</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Disconnect water side supply and return from lube oil cooler</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Remove lube oil cooler from mounting brackets</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Remove lube oil cooler and bells</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Remove lube oil cooler tube bundle</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Perform inspection and document results</td>
<td>In accordance with NMPT Form 801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Complete Preventive Maintenance Report</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Reinstall tube bundle</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Reinstall end bell</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Reinstall lube oil cooler into mounting bracket</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Reconnect oil supply and return from lube oil cooler</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Reconnect water side supply and return from lube oil cooler</td>
<td>In accordance with NMPT 801.B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Return equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Return references</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codes:

- (S) Sequence is important. This step must be performed only after the preceding step(s).
- (C) Critical step. Failure to meet standards for this item constitutes failure of the test.
- P, S, D, and Q refer to performance methods: Perform, Simulate, Discuss, and Observe/Discuss.

E-5
<table>
<thead>
<tr>
<th>ORAL QUESTIONS</th>
<th>CRITICAL CONTENT FOR ACCEPTABLE ANSWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State the precautions associated with removal of the tube bundle.</td>
<td>1. Tubes are sensitive to impact damage. 2. Damaged tubes may increase oil temperature which may cause damage to diesel.</td>
</tr>
<tr>
<td>TASK #:</td>
<td>TASK TITLE:</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>8123506447-3</td>
<td>Inspect Lube Oil Cooler (water side) Emergency Diesel Engine</td>
</tr>
</tbody>
</table>

KNOWLEDGE REQUIREMENTS:

Total number of questions:

Total number of correct responses:

Comments:

PERFORMANCE REQUIREMENTS:

Number of critical steps missed:

Number of non-critical steps missed:

Comments:

OVERALL EVALUATION:

Pass ______ Fail ______

OVERALL COMMENTS:

SIGNATURES:

Evaluator's Signature _______________ Date ___________

Evaluator's Name _______________ Title ___________

Trainee's Signature _______________ Date ___________

Trainee's Name _______________ ID ___________
INTENTIONALLY BLANK
APPENDIX F

SAMPLE JOB PERFORMANCE MEASURE
The contents of the JPM package include the following sections:

Section I Evaluator Guide

A. Instructions

B. Evaluation Guide (Confidential)

C. Qualification Card

Section II Trainee Guide

A. Instructions

B. Guide
SECTION I - EVALUATOR GUIDE

Section I.B of this document is considered test material and as such can not be left unattended nor given to the trainee.

A. EVALUATOR INSTRUCTIONS

BE ADVISED THAT SECTION I.B. "EVALUATION GUIDE" IS CONFIDENTIAL AND ITS CONTENTS CANNOT BE DISCUSSED WITH OR SHOWN TO THE TRAINEE PRIOR TO THE EVALUATION.

Directions:

1. Verify that the prerequisites and training requirements have been fulfilled:
 a. Review Section I.C. "Qualification Card" to verify that the "Prerequisites" have been signed off by the Training Coordinator.
 b. Review Section I.C. "Qualification Card" to verify that "Training" has been signed off by the OJT Trainer.

2. Set-up the JPM as follows:
 a. Materials: Loveland 450 A Temperature Calibrator (Category 1); Type K Thermocouple Extension Wire; Chart Paper; Pen cartridge.
 b. Actions Required: Approved Work Clearance Permit or Management/Supervision Authorization to perform calibration.
 c. Faults: N/A for this JPM.

3. Provide the trainee Section II-Trainee Guide.

4. Allow sufficient time for the Trainee to review the Trainee Instructions and Guide.
5. Review with the trainee the Trainee Instructions on page 10 and the Evaluation/Scoring Procedure on page 4.

6. Do Not provide hints or coaching during the evaluation. The trainee must rely on approved procedures, references, and resources.

7. On your initiating cue, begin the evaluation.

8. At each hold point, verify that the trainee has performed the step(s) IAW with the listed standard(s).

9. At completion of all evaluation activities, complete the final scoring and debrief the trainee.

10. Upon completion of the trainee debriefing, ensure that the Evaluator portion of Section 1.C., "Qualification Card" is completed, signed, and dated.

11. Have Trainee sign and date Trainee portion of Section 1.C., "Qualification Card."

12. Return the entire JPM package (Section I and II) to the training coordinator.

Evaluation/Scoring Procedure

For each step, or series of steps, circle an "S" for satisfactory or an "U" for unsatisfactory. If the trainee is able to correctly demonstrate the step, IAW with the specified standard(s), the evaluator will circle the appropriate "S" in the rating column indicating satisfactory completion. However, if the trainee fails to perform correctly, the evaluator must circle "U" in the rating column indicating a failure of the action.

To receive an overall grade of satisfactory for the JPM, the trainee shall obtain an "S" on all critical steps and receive not more than a total of three (3) unsatisfactory "U" grades on all noncritical steps.
B. EVALUATION GUIDE

Reference (REF):

1. 3-10569, Honeywell ElectroniK 17 Temperature Recorder Calibration and Maintenance
2. 300-235, Procedure Generation- Reactor Materials PMT
3. 300-239, Measuring and Test Equipment Program Requirements
4. 300-815, Reactor Materials PMT Record Management
5. S-9501, Electrical Safety Practices
6. 3-10835, Loveland 450A User Guide
7. Vendor Print File (VPF) 6349

Fault Options:

N/A for the JPM
Practical Requirements:

1. Perform test set-up.
 Hold Point 1, 6
 Standard: IAW 3-10635 and 3-10569, Section 12.1.

2. Perform recorder calibration check.
 Hold Point U
 Standard: IAW 3-10569, Section 12.2.

3. Perform recorder calibration (if required).
 Hold Point 1
 Standard: IAW 3-10569, Section 12.3, and all values are within limits specified on the Calibration Data Sheet.

4. Perform recorder maintenance (pen and chart paper replacement)
 Hold Point 1
 Standard: IAW 3-10569, Section 12.4.

5. Restore recorder to service
 Hold Point 1
 Standard: IAW 3-10569, Section 12.5.

NOTE: CAT: C = CRITICAL RATING: S = SATISFACTORY
NC = NON-CRITICAL U = UNSATISFACTORY
MOA: P = PERFORM REP: = REFERENCES
IAW = In Accordance With
C. QUALIFICATION CARD

SECTION I.B. OF THIS DOCUMENT IS CONSIDERED TEST MATERIAL AND AS SUCH CAN NOT BE LEFT UNATTENDED NOR GIVEN TO THE TRAINEE. THE TRAINEE IS REQUIRED TO SIGN THE QUALIFICATION CARD FOLLOWING THE EVALUATION DEBRIEFING.

Name: ___________________________ Date: ________________

SSN: ___________________________ Work Group: ________________

Method of accomplishment: Perform (P)

Prerequisites: Start-A-Task and Finish-A-Task; "Measuring & Test Equipment" - Course #0080; Radiation Contamination and Control Training

Signed: __________________________

Training Coordinator/Date

Training: OJT GUIDE NRDE100A00100

Signed: __________________________

Trainer/Date

Practical Requirements:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perform test set-up.</td>
<td>1.6</td>
<td>C</td>
<td>PSOD</td>
</tr>
<tr>
<td>2. Perform recorder calibration check.</td>
<td>1</td>
<td>C</td>
<td>PSOD</td>
</tr>
<tr>
<td>3. Perform recorder calibration (if required).</td>
<td>1</td>
<td>C</td>
<td>PSOD</td>
</tr>
<tr>
<td>4. Perform recorder maintenance. (pen and chart paper replacement)</td>
<td>1</td>
<td>C</td>
<td>PSOD</td>
</tr>
<tr>
<td>5. Restore recorder to service.</td>
<td>1</td>
<td>C</td>
<td>PSOD</td>
</tr>
</tbody>
</table>
JPM COMPLETION:

TO RECEIVE AN OVERALL GRADE OF SATISFACTORY FOR THE JPM, THE TRAINEE SHALL OBTAIN AN "S" ON ALL CRITICAL STEPS AND RECEIVE NOT MORE THAN A TOTAL OF THREE (3) UNSATISFACTORY "U" GRADES ON ALL NONCRITICAL STEPS.

(Circle One) Satisfactory Unsatisfactory

EVALUATOR COMMENTS:

EVALUATOR:

(Print Name) (Signature) (Date)

TRAINEE: I VERIFY THAT I HAVE COMPLETED THE REQUIREMENTS AS STIPULATED IN THIS JOB PERFORMANCE MEASURE.

(Print Name) (Signature) (Date)

SUPERVISOR: I HAVE REVIEWED THIS JPM WITH THE TRAINEE AND AM SATISFIED ALL TRAINING AND QUALIFICATION REQUIREMENTS HAVE BEEN MET. THE ABOVE NAMED TRAINEE IS RECOMMENDED FOR QUALIFICATION.

(Print Name) (Signature) (Date)

FACILITY MANAGER: QUALIFICATION APPROVED.

(Print Name) (Signature) (Date)

Note to Manager: Upon completion of this JPM, return the entire JPM package to the training coordinator.
A. TRAINEE INSTRUCTIONS

Directions:

1. This job performance measure (JPM) will be conducted under the guidance and direction of an evaluator. Any difficulties encountered during this evaluation must be directed to the evaluator.

2. You will be given Section II of this JPM. Read each element to be performed prior to actually performing it. This is an evaluation of your performance using a "Satisfactory" (S) and "Unsatisfactory" (U) scoring system.

 Note that this JPM may contain Hold Points which require the evaluator’s verification and initials prior to proceeding to the next step. Violation of any hold point and/or safety rule and/or security terminates the evaluation. Compliance with approved facility procedures supersedes the elements of this JPM.

Scoring System

To receive an overall grade of satisfactory for the JPM, the trainee shall obtain an "S" on all critical steps of the process and receive not more that a total of three (3) unsatisfactory "U" grades on all non-critical steps.

B. TRAINEE GUIDE

Task Conditions:

 Given a Honeywell ElectroniK 17 Temperature Recorder, Work Clearance Permit, and the applicable maintenance procedure(s).
Task Standards:

The Honeywell Temperature Recorder must operate in accordance with plant specifications, approved maintenance procedures and within the specifications of the applicable Calibration Data Sheet (CDS). No personnel injuries, safety or procedure violations. No damage to equipment or components.

Prerequisites:

Precautions:

High temperatures may exist in the immediate proximity of the Honeywell Recorder. Exercise caution when connecting/disconnecting terminals due to restricted access at the rear of the Honeywell Recorder. Notify Health Protection if their assistance is required.

Equipment/Materials/Tools:

SAFETY EQUIPMENT:	As required.
EQUIPMENT:	Loveland 450 A Temperature Calibrator (Category 1); Type K Thermocouple Extension Wire.
MATERIALS:	Chart Paper; Pen cartridge.
HAND TOOLS:	As required.

Initial Conditions:

Work Clearance Permit completed, equipment/materials available, Health Protection Operations have been notified if their assistance is required. The M&TE and other required information asked for at the top of the CDS is filled in, and the Category 1 M&TE is verified to be within its calibration due date.
Initiating Cue:

Directed by the OJT Evaluator.

Estimated Time:

Method of Accomplishment (MOA):

Perform

References:

1. 3-10569, Honeywell Electronik 17 Temperature Recorder Calibration and Maintenance
2. 300-235, Procedure Generation-Reactor Materials PMT
3. 300-239, Measuring and Test Equipment Program Requirements
4. 300-815, Reactor Materials PMT Record Management
5. S-9501, Electrical Safety Practices
6. 3-10635, Loveland 450A User Guide
7. Vendor Print File (VPF) 6349
Practical Requirements:

1. Perform test set-up.
 Reference: 3-10635 and 3-10569.
 Hold Point

2. Perform recorder calibration check.
 Reference: 3-10635 and 3-10569.
 Hold Point

3. Perform recorder calibration (if required).
 Reference: 3-10569.
 Hold Point

4. Perform recorder maintenance (pen and chart paper replacement).
 Reference: 3-10569.
 Hold Point

5. Restore recorder to service.
 Reference: 3-10569.
 Hold Point
DOE-HDBK-1205-97

CONCLUDING MATERIAL

<table>
<thead>
<tr>
<th>Review Activity:</th>
<th>Preparing Activity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
<td>DOE-EH-31</td>
</tr>
<tr>
<td>HR</td>
<td>AL</td>
</tr>
<tr>
<td>DP</td>
<td>CH</td>
</tr>
<tr>
<td>EH</td>
<td>FN</td>
</tr>
<tr>
<td>EM</td>
<td>ID</td>
</tr>
<tr>
<td>ER</td>
<td>NV</td>
</tr>
<tr>
<td>FM</td>
<td>OR</td>
</tr>
<tr>
<td>NE</td>
<td>RF</td>
</tr>
<tr>
<td></td>
<td>RL</td>
</tr>
<tr>
<td></td>
<td>OAK</td>
</tr>
<tr>
<td></td>
<td>SR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANL</td>
</tr>
<tr>
<td>BNL</td>
</tr>
<tr>
<td>FNAL</td>
</tr>
<tr>
<td>JINEL</td>
</tr>
<tr>
<td>LANL</td>
</tr>
<tr>
<td>LLNL</td>
</tr>
<tr>
<td>MNREL</td>
</tr>
<tr>
<td>ORNL</td>
</tr>
<tr>
<td>PNNL</td>
</tr>
<tr>
<td>SNL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1. Document Number</td>
</tr>
<tr>
<td>3a. Name of Submitting Organization</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3b. Address (Street, City, Zip Code)</td>
</tr>
<tr>
<td>5. Problem Areas (Attach extra sheets as needed.)</td>
</tr>
<tr>
<td>a. Paragraph Number and Wording</td>
</tr>
<tr>
<td>b. Recommended Wording</td>
</tr>
<tr>
<td>c. Reason/Rationale for Recommendation</td>
</tr>
<tr>
<td>6. Remarks</td>
</tr>
<tr>
<td>7a. Name of Submitter (Last, First, Ml)</td>
</tr>
<tr>
<td>7c. Mailing Address (Street, City, State, Zip Code)</td>
</tr>
</tbody>
</table>
INSTRUCTIONS: In a continuing effort to improve the U.S. Department of Energy (DOE) Technical Standards, this form is provided for use in submitting comments and suggestions for improvements. All users of DOE Technical Standards are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE) mailed to the address indicated or faxed to (423) 574-0382.

1. The submitter of this form must complete blocks 1 through 8.

2. The Technical Standards Program Office (TSPO) will forward this form to the Preparing Activity. The Preparing Activity will reply to the submitter within 30 calendar days of receipt from the TSPO.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contractors. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

OMB Burden Disclosure Statement

Public reporting burden for this collection of information is estimated to average 30 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Office of Information Resources Management Policy, Plans, and Oversight, Records Management Division, HR-422 - GTN, Paperwork Reduction Project (1910-0900), U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, DC 20585; and to the Office of Management and Budget (OMB), Paperwork Reduction Project (1910-0900), Washington, DC 20503.

U.S. Department of Energy Technical Standards Program Office

c/o Performance Assurance Project Office
P.O. Box 2009, Bldg. 9201-3
Oak Ridge, Tennessee 37831-8065