The direct elementary reactions among the first and second row elements often yield novel super hard, high energy density, and wide band-gap optical materials. The reactions of oxygen and nitrogen with boron and carbon have been investigated at high pressures and temperatures by using an integrated technique of diamond-anvil cell, laser-heating, x-ray diffraction, Raman spectroscopy. A wide range of products has been synthesized and characterized in-situ at high pressures, including {alpha}-CO{sub 2}, B{sub 2}0{sub 3}-I,B{sub 2}0{sub 3}-II, c-BN, h-BN, h{sup `}-B, amorphous carbon nitrides. The elementary reactions occur exothermically and result in highly polycrystallized products with an exception in carbon-nitrogen ...
continued below
Publisher Info:
Lawrence Livermore National Lab., CA (United States)
Place of Publication:
California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The direct elementary reactions among the first and second row elements often yield novel super hard, high energy density, and wide band-gap optical materials. The reactions of oxygen and nitrogen with boron and carbon have been investigated at high pressures and temperatures by using an integrated technique of diamond-anvil cell, laser-heating, x-ray diffraction, Raman spectroscopy. A wide range of products has been synthesized and characterized in-situ at high pressures, including {alpha}-CO{sub 2}, B{sub 2}0{sub 3}-I,B{sub 2}0{sub 3}-II, c-BN, h-BN, h{sup `}-B, amorphous carbon nitrides. The elementary reactions occur exothermically and result in highly polycrystallized products with an exception in carbon-nitrogen reactions. The implication of the elementary reactions to energetic materials applications is discussed.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Yoo, C.S.; Cynn, H. & Nicol, M.F.Elementary reactions of nitrogen and oxygen with boron and carbon at high pressures and temperatures,
article,
August 1, 1997;
California.
(digital.library.unt.edu/ark:/67531/metadc690298/:
accessed February 22, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.