Development and fabrication of a Bi-2223 racetrack coil for generator applications

PDF Version Also Available for Download.

Description

The development and fabrication of a layer-wound, epoxy-impregnated Bi-2223 high-temperature superconducting (HTS) racetrack coil which generates 40,000 ampere-turns of magnetomotive force (MMF) at 25 K is described. The coil was wound using Ag-sheathed Bi-2223 tape conductor laminated with copper foils for strength enhancement and insulated using a paper-wrap method. After epoxy impregnation, the coil was tested over a range of 16--25 K in a vacuum dewar using a closed-cycle helium refrigeration system. Descriptions of the tape lamination and insulation processing, the coil winding and impregnation, and the experimental test setup are given.

Physical Description

4 p.

Creation Information

Herd, K.G.; Salasoo, L.; Laskaris, E.T.; Ranze, R.A.; King, C.G.; Haldar, P. et al. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The development and fabrication of a layer-wound, epoxy-impregnated Bi-2223 high-temperature superconducting (HTS) racetrack coil which generates 40,000 ampere-turns of magnetomotive force (MMF) at 25 K is described. The coil was wound using Ag-sheathed Bi-2223 tape conductor laminated with copper foils for strength enhancement and insulated using a paper-wrap method. After epoxy impregnation, the coil was tested over a range of 16--25 K in a vacuum dewar using a closed-cycle helium refrigeration system. Descriptions of the tape lamination and insulation processing, the coil winding and impregnation, and the experimental test setup are given.

Physical Description

4 p.

Notes

INIS; OSTI as DE97007752

Source

  • Applied superconductivity conference, Pittsburgh, PA (United States), 25-30 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97007752
  • Report No.: DOE/CH/10589--1
  • Report No.: CONF-960850--26
  • Grant Number: FC36-93CH10589
  • Office of Scientific & Technical Information Report Number: 505395
  • Archival Resource Key: ark:/67531/metadc690276

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 13, 2015, 2:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Herd, K.G.; Salasoo, L.; Laskaris, E.T.; Ranze, R.A.; King, C.G.; Haldar, P. et al. Development and fabrication of a Bi-2223 racetrack coil for generator applications, article, December 31, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc690276/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.