Multi-bunch energy compensation in the NLC bunch compressor

PDF Version Also Available for Download.

Description

The task of the NLC bunch compressor is to reduce the length of each bunch in a train of 90 bunches from 4 mm, at extraction from the damping ring, to about 100 {mu}m, suitable for injection into the X-band main linac. This task is complicated by longitudinal long-range wake fields and the multi-bunch beam loading in the various accelerating sections of the compressor. One possible approach to compensate the multi-bunch beam loading is to add two RF systems with slightly different frequencies ({prime} {Delta}f{prime} scheme) to each accelerating section, as first proposed by Kikuchi. This paper summarizes the choice ... continued below

Physical Description

4 p.

Creation Information

Zimmermann, F.; Raubenheimer, T.O. & Thomson, K.A. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The task of the NLC bunch compressor is to reduce the length of each bunch in a train of 90 bunches from 4 mm, at extraction from the damping ring, to about 100 {mu}m, suitable for injection into the X-band main linac. This task is complicated by longitudinal long-range wake fields and the multi-bunch beam loading in the various accelerating sections of the compressor. One possible approach to compensate the multi-bunch beam loading is to add two RF systems with slightly different frequencies ({prime} {Delta}f{prime} scheme) to each accelerating section, as first proposed by Kikuchi. This paper summarizes the choice of parameters for three such compensating sections, and presents simulation results of combined single- and multi-bunch dynamics for four different NLC versions. The multi-bunch energy compensation is shown to be straightforward and its performance to be satisfactory.

Physical Description

4 p.

Notes

INIS; OSTI as DE97009071

Source

  • EPAC `96: 5. European particle accelerator conference, Barcelona (Spain), 10-14 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009071
  • Report No.: SLAC-PUB--7141
  • Report No.: CONF-960621--
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 539873
  • Archival Resource Key: ark:/67531/metadc690097

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 2, 2016, 5:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zimmermann, F.; Raubenheimer, T.O. & Thomson, K.A. Multi-bunch energy compensation in the NLC bunch compressor, article, June 1, 1996; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc690097/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.