CONCEPTUAL DESIGN OF THE INNER CRYOSTAT SUPPORT
AND JACK

BY

VICTOR GUARINO AND EMIL PETEREIT

Argonne National Laboratory
High Energy Physics Division
Argonne, IL 60439

January 11, 1998

*Work supported in part by the U.S. Department of Energy, Division of High Energy Physics, under
Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

--- DISCLAIMER ---

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Prices available from (423) 576-8401

Available to the public from the National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Introduction:

The Endcap Cryostat will be supported by the End Barrel Tilecalorimeter at four points. The outer support points will be carried by a structure that is external to the End Barrel modules while the inner support points will be directly on the modules. This paper concerns the design of these inner support points.

The design parameters for the inner support points are:

1. Must be able to support twice the front load from the Endcap Cryostat (70 tons)
2. The support point must make contact on the inner radius surface provided on the Endcap Cryostat
3. Vertical adjust must be allowed of up to +/- 6mm
4. The support must be a simple support
5. The support must be contained within the envelope of one End Barrel submodule

Proposed Design:

The proposed design is shown in Figs. 1, 2, 3 and 4. This design consists of a permanent shim on which the Endcap Cryostat is placed during installation. This shim rests upon the body of a hydraulic jack as shown in Fig. 2. This jack consists of two hydraulic chambers that drive two pistons. When it is desired to vertically reposition the cryostat, a 45mm thick bar is inserted above these pistons. This bar contacts the second outer radius surface on the cryostat support pad. The purpose of the bar is to distribute the load from the hydraulic cylinder so that the force is distributed across a large area and the compressive yield stress is not reached. The surface area of the bar is 13,750mm², which results in a compressive stress of 67.3 N/mm². The gusset on the cryostat is made of 5083 aluminum that has compressive yield strength of 180 N/mm².

The vertical position of the cryostat will be adjusted by applying hydraulic pressure to the jack with the lifting bar in place, which will initially lift the cryostat. The existing shim will then be removed and the cryostat will be raised or lowered as needed. Once the final position is reached, the required shim size will be measured and then placed into location. The hydraulic pressure will then be removed from the jack so that the entire load from the cryostat is carried on the shim. Finally, the lifting bar will be removed.

Outstanding Issues:

There are two main outstanding issues that must be resolved with the cryostat group. First, are the size and location of the mounting surfaces shown adequate and incorporated into the current cryostat design? Second, what are the space requirements for the cryostat installation fixturing? This is a critical issue that remains to be resolved since it impacts the design of the special submodules that surround the cryostat support point.
DIMENSIONS ARE IN mm.
ORSAY REF. DWG. NO. 1080DB100 REV. C

Figure 2