Polarisation dependence of the spin-density-wave excitations in single-domain chromium

P. Böni, B. J. Sternlieb, B. Roessli, J. E. Lorenzo, G. Shirane, and S. A. Werner

- Labor für Neutronenstreuung, ETH & PSI, CH-5232 Villigen PSI, Switzerland
- Brookhaven National Laboratory, Upton, New York 11973
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
- Laboratoire de Crystallographie, CNRS, F-38042 Grenoble, France
- Department of Physics, University of Missouri, Columbia, Missouri 65211

A polarised neutron scattering experiment has been performed on a single-Q, single-domain sample of Cr in a magnetic field of 4 T in the transverse spin-density-wave phase. It is confirmed that the longitudinal fluctuations are enhanced for energy transfers $E < 8$ meV similarly as in the longitudinal spin-density-wave phase. The spin wave modes with δS parallel and perpendicular to Q are isotropic within the E-range investigated.

Keywords: Antiferromagnetism, incommensurate, itinerant, polarised neutrons

Corresponding author:
Peter Böni
Laboratory for Neutron Scattering
ETH & PSI
CH-5232 Villigen PSI, Switzerland
Tel: +41 56 310 2518
Fax: +41 56 310 2939
e-mail: boni@psi.ch
1. Introduction

Chromium is a very fascinating magnetic material [1]. At $T_N = 311$ K it undergoes a transition from a paramagnetic phase to a transversely polarised spin-density-wave phase (TSDW) characterised by incommensurate wave vectors $Q_x = (1 \pm \delta 0 0)$. At the spin flip temperature $T_{sf} = 121$ K a transition to a longitudinally polarised phase (LSDW) occurs. The magnetic excitations exhibit many unusual features, in particular, the spin wave branches originating from the magnetic satellite positions are extremely steep and very difficult to resolve.

Measurements using unpolarized neutrons have shown unambiguously that the longitudinal excitations are enhanced for $E < 8$ meV in the LSDW phase [2,3]. In the TSDW phase, the fluctuations perpendicular to Q are also enhanced below 8 meV [2], however, it was not clear, which modes are enhanced because at least three different modes (L, T_1, and T_2, see Fig. 1b) contribute to the scattering cross section. A clear separation is only possible with polarised neutrons on a single-Q, single-domain sample (Fig. 1c).

The neutron scattering experiments were performed using the IN20 polarised-neutron triple axis spectrometer at the Institut Laue-Langevin in Grenoble. The crystal was cooled through T_N in a magnetic field of 20 T in order to induce a single-Q state. During the experiments, a vertical field $H = 4$ T was applied along [001] in order to enforce a single-domain state with the magnetic moments lying in the $(h k 0)$ scattering plane (Fig. 1c). The flipping ratio at $(1-\delta 0 0)$ was 12 indicating that essentially all moments are aligned in the $(h k 0)$ plane. The constant-Q scans were conducted at the $(1-\delta 0 0)$
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
and (δ 1 0) satellite positions (Fig. 1a). Table 1 lists the fluctuation modes that can be measured at these positions with the spin flipper on and off. The background has been determined by measuring the spin-flip and non-spin-flip scattering at (0.7 0.7 0). It has not been subtracted from the data.

2. Results

The data in Fig. 2 shows clearly that the longitudinal fluctuations are enhanced below 8 meV, similarly as in the LSDW phase [2,3]. In contrast, the spin wave modes T₁ and T₂ are essentially independent of E (Figs. 2 and 3). The increase of the intensity of the T₁ mode at (1-δ,0,0) and (δ,1,0) for E < 5 meV is most likely due to the increasing background and not due to magnetic scattering. The transverse fluctuations seem to be stronger above E ≈ 10 meV than the longitudinal fluctuations, in contrast to the situation in the LSDW phase [3].

We have performed similar measurements at 299 K at the allowed and silent satellite positions [4]. The intensity of the allowed peaks decreases monotonically with increasing E. In particular, at (1-δ 0 0), the T₁ mode approaches the longitudinal mode and the enhancement for E < 8 meV is lost. The magnetic intensity of the T₁ and T₂ mode at (1 δ 0) decreases also with increasing E, however, the overall intensities are larger maybe due to a resolution effect. The scattering at the silent satellite positions is substantial. Finally, we have investigated the polarisation dependence of the Fincher-Burke mode. Our results are in agreement with previous measurements by Pynn et al. [5] and confirm that the 4 meV commensurate mode at (1 0 0) is of longitudinal origin.
Summarising, our measurements in the TSDW phase show that the spin wave modes T_1 and T_2 are essentially identical. At low T, the longitudinal mode is enhanced below $E \equiv 8$ meV, similarly as in the LSDW phase. Close to T_N, this enhancement vanishes, i.e. the phase transition to the paramagnetic phase is driven by the longitudinal and the spin wave modes.

Work at Brookhaven National Laboratory is supported by the Division of Material Sciences, U.S. D.O.E., under contract no. DE-AC02-76CH00016.

3. References

Table 1: Polarisation and selection rules for the magnetic fluctuation modes in single-domain Cr.

<table>
<thead>
<tr>
<th>momentum transfer</th>
<th>non spin flip</th>
<th>spin flip</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-δ,0,0)</td>
<td>T₁</td>
<td>L</td>
</tr>
<tr>
<td>(δ,1,0)</td>
<td>T₁</td>
<td>T₂</td>
</tr>
</tbody>
</table>

4. **Figure Captions**

Fig. 1: a) Brillouin zone of bcc Cr. The squares and circles represent chemical Bragg peaks and magnetic satellites, respectively. The filled circles indicate the visible satellites in the single-Q state. b) Definition of the three different polarisation modes. c) Schematics of a single-domain TSDW.

Fig. 2: Polarisation dependence of magnetic fluctuations at (1-δ 0 0) in the TSDW phase. The longitudinal mode is enhanced below 8 meV, when compared with the T₁ mode. The backgrounds for the spin-flip (sf) and non-spin-flip (nsf) scattering are given by the solid lines.

Fig. 3: Polarisation dependence of the spin wave modes T₁ and T₂ at (δ 1 0) in the TSDW phase. The spin-flip and non-spin-flip backgrounds are given by the solid lines.
Cr (#10) (1-0 0 0) T=136K

- T_1: spin wave (nsf)
- L: longitudinal (sf)

Counts (7.5 min) vs. Energy Transfer (meV)
Cr (#10) \((\delta 1 0)\) \(T=136K\)

- \(T_1\) spin wave (nsf)
- \(T_2\) spin wave (sf)

Counts (7.5 min)

Energy Transfer (meV)
Report Number (14) BNL-64610
CONF-970814--

Publ. Date (11) 199707
Sponsor Code (18) DE/ER, XF
UC Category (19) UC-410, DE/ER

DOE