Microscopic analysis of Pu-contaminated incinerator ash: Implications for immobilization

PDF Version Also Available for Download.

Description

In this paper, a nanometer-scale mineralogical study with analytical transmission electron microscopy (AEM) of plutonium-bearing incinerator ash from the Rocky Flats Environmental Technology Site (RFETS) in Colorado is described. The findings from this work may have implications for the present effort to immobilize plutonium waste. Around 70% of the plutonium ash in the DOE weapons complex is stored at RFETS. The ash was formed from the combustion of contaminated wastes generated from plutonium processing. The RFETS incinerator ash composition has been determined by Blum et al. The ash was formed at temperatures estimated to be between 200 C and 900 ... continued below

Physical Description

5 p.

Creation Information

Buck, E.C. October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

  • Buck, E.C. Argonne National Lab., IL (United States). Chemical Technology Div.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, a nanometer-scale mineralogical study with analytical transmission electron microscopy (AEM) of plutonium-bearing incinerator ash from the Rocky Flats Environmental Technology Site (RFETS) in Colorado is described. The findings from this work may have implications for the present effort to immobilize plutonium waste. Around 70% of the plutonium ash in the DOE weapons complex is stored at RFETS. The ash was formed from the combustion of contaminated wastes generated from plutonium processing. The RFETS incinerator ash composition has been determined by Blum et al. The ash was formed at temperatures estimated to be between 200 C and 900 C and contains up to 14 wt% Pu. Ash is a generic term used to describe the by-product of combustion and owing to the variability in the inorganic components.

Physical Description

5 p.

Notes

INIS; OSTI as DE97008379

Source

  • Plutonium futures: the science, Santa Fe, NM (United States), 25-27 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008379
  • Report No.: ANL/CMT/CP--92884
  • Report No.: CONF-970844--5
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 537243
  • Archival Resource Key: ark:/67531/metadc689861

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 20, 2016, 2:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Buck, E.C. Microscopic analysis of Pu-contaminated incinerator ash: Implications for immobilization, article, October 1, 1997; Illinois. (digital.library.unt.edu/ark:/67531/metadc689861/: accessed January 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.