Swamp plots for dynamic aperture studies of PEP-II lattices

PDF Version Also Available for Download.

Description

With a newly developed algorithm using resonance basis Lie generators and their evaluation with action-angle Poisson bracket maps (nPB tracking) the authors have been able to perform fast tracking for dynamic aperture studies of PEP-II lattices as well as incorporate lattice nonlinearities in beam-beam studies. They have been able to better understand the relationship between dynamic apertures and the tune shift and resonance coefficients in the generators of the one-turn maps. To obtain swamp plots (dynamic aperture vs. working point) of the PEP-II lattices, they first compute a one-turn resonance basis map for a nominal working point and then perform ... continued below

Physical Description

3 p.

Creation Information

Yan, Y.T.; Irwin, J.; Cai, Y.; Chen, T. & Ritson, D. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

With a newly developed algorithm using resonance basis Lie generators and their evaluation with action-angle Poisson bracket maps (nPB tracking) the authors have been able to perform fast tracking for dynamic aperture studies of PEP-II lattices as well as incorporate lattice nonlinearities in beam-beam studies. They have been able to better understand the relationship between dynamic apertures and the tune shift and resonance coefficients in the generators of the one-turn maps. To obtain swamp plots (dynamic aperture vs. working point) of the PEP-II lattices, they first compute a one-turn resonance basis map for a nominal working point and then perform nPB tracking by switching the working point while holding fixed all other terms in the map. Results have been spot-checked by comparing with element-by-element tracking.

Physical Description

3 p.

Notes

INIS; OSTI as DE95012507

Subjects

Source

  • 16. Institute of Electrical and Electronic Engineers (IEEE) particle accelerator conference, Dallas, TX (United States), 1-5 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95012507
  • Report No.: SLAC-PUB--95-6876
  • Report No.: CONF-950512--81
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 64175
  • Archival Resource Key: ark:/67531/metadc689841

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 5, 2016, 7:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yan, Y.T.; Irwin, J.; Cai, Y.; Chen, T. & Ritson, D. Swamp plots for dynamic aperture studies of PEP-II lattices, article, June 1, 1995; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc689841/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.