The use of beam propagation modeling of Beamlet and Nova to ensure a ``safe`` National Ignition Facility laser system design

PDF Version Also Available for Download.

Description

An exhaustive set of Beamlet and Nova laser system simulations were performed over a wide range of power levels in order to gain understanding about the statistical trends in Nova and Beamlet`s experimental data sets, and to provide critical validation of propagation tools and design ``rules`` applied to the 192-arm National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). The experiments considered for modeling were at 220-ps FWHM duration with unpumped booster slabs on Beamlet, and 100-ps FWHM with pumped 31.5-cm and 46-cm disk amplifiers on Nova. Simulations indicated that on Beamlet, the AB (the intensity pendent phase shift ... continued below

Physical Description

15 p.

Creation Information

Henesian, M.A.; Renard, P. & Auerbach, J. March 17, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An exhaustive set of Beamlet and Nova laser system simulations were performed over a wide range of power levels in order to gain understanding about the statistical trends in Nova and Beamlet`s experimental data sets, and to provide critical validation of propagation tools and design ``rules`` applied to the 192-arm National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). The experiments considered for modeling were at 220-ps FWHM duration with unpumped booster slabs on Beamlet, and 100-ps FWHM with pumped 31.5-cm and 46-cm disk amplifiers on Nova. Simulations indicated that on Beamlet, the AB (the intensity pendent phase shift parameter characterizing the tendency towards beam filamentation) for the booster amplifier stage without pumping, would be nearly identical to the AB expected on NIF at the peak of a typical 20-ns long shaped pulse intended for ICF target irradiation. Therefore, with energies less than I kJ in short-pulses, we examined on Beamlet the comparable AB-driven filamentation conditions predicted for long ICF pulseshapes in the 18 kJ regime on the NIF, while avoiding fluence dependent surface damage. Various spatial filter pinhole configurations were examined on Nova and Beamlet. Open transport spatial filter pinholes were used in some experiments to allow the direct measurement of the onset of beam filamentation. Schlieren images on Beamlet of the far field irradiance measuring the scattered light fraction outside of 33-{micro}radians were also obtained and compared to modeled results.

Physical Description

15 p.

Notes

INIS; OSTI as DE97053166

Source

  • 2. annual solid state lasers for applications to inertial confinement fusion (ICF), Paris (France), 22-25 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97053166
  • Report No.: UCRL-JC--124891
  • Report No.: CONF-9610225--37
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 505664
  • Archival Resource Key: ark:/67531/metadc689763

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 17, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 18, 2016, 11:05 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 26

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Henesian, M.A.; Renard, P. & Auerbach, J. The use of beam propagation modeling of Beamlet and Nova to ensure a ``safe`` National Ignition Facility laser system design, article, March 17, 1997; California. (digital.library.unt.edu/ark:/67531/metadc689763/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.