Proceedings of RIKEN BNL Research Center Workshop
Volume 3

$$
\text { CONF- } 9707116-\sqrt{601} 2
$$

Hadron Spin-Flip at RHIC Energies

July 21 - August 22, 1997

RECEIVED

SEP 241097
OSTI

Organizers
Elliot Leader and T. L. Trueman

DISTRUCTION OF THS DOCMMENT IS U WUITED

RIKEN BNL Research Center

Building 510, Brookhaven National Laboratory, Upton, NY 11973, USA

Volume 1 - Open Standards for Cascade Models for RHIC - BNL-64722 June 23-27, 1997 - Organizer - Miklos Gyulassy

Volume 2 - Perturbative QCD as a Probe of Hadron Structure - BNL-64723 July 14-25, 1997 - Organizers Robert Jaffe and George Sterman

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic inage products. Images are produced from the best available original document.

Preface to the Series

The RIKEN BNL Research Center was established this April at Brookhaven National Laboratory. It is funded by the "Rikagaku Kenkysho" (Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC physics through nurturing of a new generation of young physicists.

For the first year, the Center will have only a Theory Group, with an Experimental Group to be structured later. The Theory Group will consist of about 12-15 Postdocs and Fellows, and plans to have an active Visiting Scientist program. A 0.6 teraflop parallel processor will be completed at the Center by the end of this year. In addition, the Center organizes workshops centered on specific problems in strong interactions.

Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form a proceedings, which can therefore be available within a short time.
T.D. Lee

July 4, 1997

CONTENTS

Preface to the Seriesi
List of Participantsiii
Introduction
T.L. Trueman 1
Hadronic Spin-Flip Contribution to A_{N}
T.L. Trueman 3
Review of polarization in $p p$ elastic scattering at high energy and phe- nomenology
Jacques Soffer 11
Attempts to improve the accuracy of the CNI analyzing power Elliot Leader 27
Dispersion relation approach to spin flip
N.H. Buttimore 35
Polarimetry at high energies with $p p$ elastic scattering
Boris Kopeliovich 45
RIKEN BNL Center Symposia/Workshops55

Participants

N.H. Buttimore
University of Dublin Hamilton Building Dublin 2, Ireland
Boris Kopeliovich
Max-Planck-Institute
Heidelberg
Germany
Elliot Leader - (Organizer)
Birbeck College
London WC1E 7HX UK
Jacques Soffer
Centre de Physique Thèorique
CNRS Luminy Case 907
13288 Marseille Cedex 09 France
T. Laurence Trueman - (Organizer)
Physics Department
Brookhaven National Laboratory
Upton, NY 11973

INTRODUCTION

From July 21 to August 22, 1997 a working group sponsored by the RIKEN BNL Research Center was convened to consider "Hadron Spin-Flip at RHIC Energies." The original motivation for this arose from the importance of understanding the hadronic part of the proton-proton spin flip amplitude in using the Coulomb-Nuclear Interference for polarimetry. This is a very difficult, non-perturbative problem and it is not possible to make a calculation with controlled approximations, so a number of approaches were followed:

1. methods to extract the necessary information from past experiments and from RHIC experiments were examined;
2. phenomenological, Regge models - some of them very old - were reviewed;
3. the predictions of several non-perturbative theoretical models were evaluated;
4. the use of nuclei for the CNI experiment was quantitatively considered;
5. alternative methods of polarimetry were critically studied. These included Primikoff effect, large-t $p p$ scattering, and $p e$ double spin asymmetry.

The first talk of the working group by Elliot Leader was presented at the contemporaneous workshop on Perturbative QCD as a Probe of Hadron Structure, and his transparencies are included in that Workshop Proceedings. A selection of the others are included here.

There was also active participation in our work by Y. Makdisi, W. Guryn. G. Bunce, F. Paige, M. Tannenbaum and T. Rosen, all from BNL, and S. MacDowell, a visitor from Yale.

Several research papers based on this work are in preparation. Thanks to Elliot Leader, whose idea it was to convene this group, and to Kopeliovich, Soffer and Buttimore for their work and stimulating collaboration.

Thanks to Brookhaven National Laboratory and to the U.S. Department of Energy for providing the facilities to hold this workshop.

T.L. Trueman
Co-Organizer

$$
2
$$

Hadronic Spin-Flip Contribution to A_{N}

T.L. Trueman
Brookhaven National Laboratory
Upton, New York 11973

The hadronic part of the $p-p$ single flip amplitude ϕ_{5} is the center of our investigation because the uncertainty in its value prevents the Coulomb-Nuclear-Interference (CNI) method from being a certain and precise absolute polarimeter. The first figure shows the measurable quantities that depend on ϕ_{5} that involve only initial state polarization. The second figure shows the data from Fermilab E704. This is the only high energy data available in the region of t for which A_{N} is enhanced by the CNI effect. This is well fit by $\phi_{5}=0$, indicated in the figure by $\tau=0$ but the error is ± 0.15. In this section $\tau=\sqrt{-t / m} \phi_{5} / \phi_{1}$. That fit is the best fit with $\operatorname{Im} \tau$ constrained to be zero. If that constraint is lifted the best fit, also shown, has a much bigger error, $\pm .3$, and about the same χ^{2}.

The next figure shows the energy dependence of P at $t=-0.15$, the smallest value of t for which there is sufficient high energy data. The best fit to $a+b / \sqrt{p_{L}}+c / p_{L}$ gives a non-zero asymptotic value for P.
$A_{N N}$ depends on ϕ_{5} but it also depends sensitively on ϕ_{2} and ϕ_{4}. If we assume that these last two vanish linearly with t, as would be the case with factorized Regge poles but is more general, then the parametrization shown is appropriate. The two pieces can cancel against each other simulating a pure CNI piece but with a shifted magnitude corresponding to the same shift in A_{N}. The size of $A_{N N}$ is very small, probably unmeasurable at $p p 2 p p$.

There are big double-spin asymmetries in $p-e$ scattering which are free of hadronic uncertainties. This has led Nurushev and collaborators to propose putting a proton beam onto a fixed polarized electron target. The symmetries are large only when the electron is longitudinally polarized, either $A_{L L}$ or $A_{S L}$. The latter, relevant for transversely polarized beams, is shown in the last figure for $p_{L}=100 \mathrm{GeV} / \mathrm{c}$ and $p_{L}=250 \mathrm{GeV} / \mathrm{c}$. The recoil electron energy is quite large, about $10 \mathrm{GeV} / \mathrm{c}$ and $55 \mathrm{GeV} / \mathrm{c}$ respectively and the recoil angle is about 2 mrad to the beam direction in both cases near the maximum asymmetry.

Measurable quantities depending on ϕ_{5}

$$
\begin{gathered}
\frac{d \sigma}{d t}=\frac{2 \pi}{s^{2}}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}+4\left|\phi_{5}\right|^{2}\right) \\
A_{N} \frac{d \sigma}{d t}=-\frac{4 \pi}{s^{2}} \operatorname{Im}\left(\phi_{5}^{*}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}\right)\right) \\
A_{N N} \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}}\left(2\left|\phi_{5}\right|^{2}+\operatorname{Re}\left(\phi_{1}^{*} \phi_{2}-\phi_{3}^{*} \phi_{4}\right)\right) \\
A_{S L} \frac{d \sigma}{d t}=\frac{4 \pi}{s^{2}} \operatorname{Re}\left(\phi_{5}^{*}\left(\phi_{1}+\phi_{2}-\phi_{3}+\phi_{4}\right)\right)
\end{gathered}
$$

Best fits to 704 data with and without $\operatorname{Im}(\tau)=0$

Energy dependence of \mathbf{P} at $\mathrm{t}=-\mathbf{0 . 1 5} \mathrm{GeV}^{2}$

Best fit gives asymptotic value 2.3 ± 1.2

Pure CNI at 300 is 1.1

[^0]$A_{N N}$ for bounding spin-flip:

If

$$
\operatorname{Re}\left(\phi_{1}^{*} \phi_{2}^{h}-\phi_{3}^{*} \phi_{4}^{h}\right)=0
$$

then

$$
A_{N N} \approx-\sqrt{\frac{16 \pi}{\left(1+\rho^{2}\right) \frac{d \sigma}{d t}}} \frac{\alpha}{m^{2}}(\mu-1)\left(-\frac{(\mu-1) \rho}{4}+\rho R e \tau-\operatorname{Im} \tau\right)-2 \frac{t}{m^{2}}|\tau|^{2}
$$

Small effect can be masked by very small δ :

$$
\begin{aligned}
\phi_{1} & =\phi_{3} \\
\phi_{2} & =-\phi_{4}=-\delta \frac{t}{m^{2}} \phi_{1}
\end{aligned}
$$

Note that $A_{S L}=0$ with this parametrization.
If $\delta=0$ double spin asymmetry measures $P^{2} / \tau /^{2}$ and combined with single spin fixes P up to 2-fold ambiguity

$$
\tau=\delta=0
$$

$$
P_{\text {apparent }}(\tau)=P_{\text {true }} \frac{A_{N}(\tau \neq 0)}{A_{N}(\nu)}
$$

From $A_{n} P_{\text {app }}(0.1) / P_{\text {true }} \simeq 0.9$
From AnN $\frac{P_{\text {ally }}(0.1)}{P_{\text {true }}}=\sqrt{\frac{A_{N N(0.1,-.01)}^{A_{N N}(0)}}{0.8}}$
consistent 1. $=\sqrt{0.8}=0.9$
pe double spin asymmetry

REVIEW OF POLARIZATION IN $p p$ ELASTIC SCATTERING AT HIGH ENERGY AND PHENOMENOLOGY

Jacques SOFFER ${ }^{1}$
Centre de Physique Théorique
CNRS Luminy Case 907
13288 Marseille Cedex 09 France

We start by recalling the difficulty of describing $p p$ elastic scattering, which involves five complex helicity amplitudes $\phi_{i}(s, t)(i=1, \ldots 5)$. So, for each kinematic point, center-of-mass energy and momentum transfer, the full knowledge of this reaction requires the extraction from the data of nine real numbers, since one overall phase remains undetermined. Indeed this implies the need of many measurements; most of the possible twenty five ones have never been done at high energies. At $p_{\text {lab }}=6 \mathrm{GeV} / \mathrm{c}$ several spin observables have been measured at the ZGS (ANL) and we illustrate the method for an amplitude reconstruction. It leaves large uncertainties on the phase and the magnitude of the natural parity exchange amplitudes $\phi_{1}-\phi_{3}$ and $\phi_{2}+\phi_{4}$, which turn out to be the smallest ones. A rigorous positivity bound for $\operatorname{Im} \phi_{2}(s, 0)$ has been derived long ago, which can be translated in terms of total cross sections in pure spin states, and it is obviously obeyed by the available data up to $p_{\text {lab }}=12 \mathrm{GeV} / \mathrm{c}$.

We also recall the present experimental situation at high energies for the single-spin asymmetry A_{N} which has been measured at CERN, BNL and FNAL up to $p_{\text {lab }}=300$ $\mathrm{GeV} / \mathrm{c}$. One should notice the scarcity and some lack of accuracy of these data which have explored only a limited range in momentum transfer. One observes that for $p_{\text {lab }}<25 \mathrm{GeV} / \mathrm{c}$ or so at fixed t, A_{N} decreases with increasing energy but its behavior at higher energies remains unclear. A simple Regge picture is unable to describe properly these data but in the high energy region an impact picture approach is shown to be rather successful. This model introduces a small flip-coupling of the Pomeron such that its contribution to the singleflip amplitude $\phi_{5}^{\mathcal{P}}$ is non-zero and therefore it predicts that A_{N} does not vanish at very high energies. Here one should not forget that even if $\phi_{5}^{\mathcal{P}}=0$, the effect of the CoulombNuclear interference (CNI) introduces a positive shift of A_{N} of the order of 1% to 2% up to $|t|=1 \mathrm{GeV}^{2}$ or so. This is a sizeable effect when we compare it to the measured values. The magnitude and phase of ϕ_{5} are crucial to decide if one can use this CNI effect in the very forward region ($t \gtrsim 10^{-3} \mathrm{GeV}^{2}$) to calibrate at RHIC the degree of polarization of a high energy polarized proton beam. According to the impact picture model $\phi_{5}^{\mathcal{P}}$ is so small in this region that it should not affect the pure CNI prediction.

[^1]SPIN-FLIP FROM NON - PQRTMRBATIGECHIRAL
STMMETAY BREAMFinG (Waneimino, q.FDRTE Pac 21 (1993) 223)
Motivation
THE SMALLNESS OF THE OREEAJED AXIAL CHARGE IN POL. DIS MIGHT BE DUE TO CHIRAL VIOLATING EFFECTS:
CAN INJOKE INSTANTON hire GLEONIC FiELD CONFIGURATIONS WHICH REDUCE THE AXIAL CHARGES CARRIED BY THE QuARKS

THEY Fros̃os
 OF THESE M INSTANTONLIKE GUGOAIC FiELD

First recall that $\left\langle p_{i} \lambda\right| \operatorname{ff}_{r}^{r}\left(p_{1} \lambda\right)=\lim _{q \rightarrow 0} G_{A}\left(q^{2}\right) s^{\mu}$ WE EXPECT $G_{A}(0)$ ~ 0.6 AND EXP TY $G_{A}(0)$ is sMALLER THE ANOMALY EQ. OF $\partial_{r} j_{j}^{\mu}$ impliEs

$$
\begin{aligned}
& \lim _{\{\rightarrow 0} i G_{A}\left(q^{2}\right) q_{r} \bar{u}_{\lambda^{\prime}}\left(p^{\prime}\right) \gamma^{\mu} \gamma_{\Gamma}^{\mu}(\phi)=\left\langle p_{\lambda} \lambda^{\prime}\right|\left\{\frac{N_{f}}{8 \pi^{2}} \delta^{2} T_{\mu} \varepsilon^{+v \rho \sigma} F_{\mu_{\nu}} F_{\rho \sigma}\right. \\
& \left.+\sum_{5} 2 i m_{i} \cdot \overline{4}_{i} r_{r} \psi_{i}\right\}\left(\mathcal{F}_{1}, 2\right)
\end{aligned}
$$

The Anomaly density is proportional to the. instanton minus anti instanton density $Q(x)$

$$
\frac{N_{f}}{8 \pi^{2}} \delta^{2} T_{\mu} \varepsilon^{r \operatorname{rg\sigma }} F_{\mu_{r}}(x) F_{\rho \sigma}(x)=-2 Q(x)
$$

SO ITPROJUCES A DIRECT CONTRIBUTION FROM INSTANT, TO NUCLEON AND WE CAN VIEW AS DEFINING AN EFFECTIVE COUPLING SUCH AS

$$
\left\langle p_{1} \lambda^{\prime}\right| Q(x)|p, \lambda\rangle=-\lim _{q \rightarrow 0} i M_{N} G_{A}^{i m h}\left(q^{2}\right) \bar{u}_{\lambda^{\prime}}\left(p^{\prime}\right)^{\gamma} u_{\lambda}(p)
$$

WHiCH is PuRE HELiCity FLiP (NEE3 A=-21)
G_{A} imil. (O) is a UNivERSAL cONST. WHICH TAKES carE
Of THE OREEnvEN REDUCTION OF $G_{A}(0)$ FROM 0.6
To 0.3 oR so.

Now A Nout-vanissint Quicor-guatis-instantin

THEAEPORE ONE CAN ALSO CONSIORR HERE. THE EXISTENCE OF NOSDIRECT CONTRIBUTIONS WITH AN ERFECTIVE NUCLEON-NLCLESN - M GCLONS COMPLIN天

$$
\begin{array}{r}
\left\langle p_{1} \lambda^{\prime} ; g_{1} \cdots g_{m} \mid p, 2\right\rangle=\lim _{q \rightarrow 0} i M_{\Delta} G_{A}^{i a t}\left(q^{2}\right) \bar{u}_{\lambda}(t)_{\delta} u_{\lambda}(t) \prod_{i=1}^{a} \\
\left.\left[\frac{2}{g_{s}}\right\}_{\eta_{i}}^{u_{i}} v_{i} k_{i}^{\mu_{0}} S^{2}\right]
\end{array}
$$

$$
\text { LET's RECALC THAT } \left.A_{p}^{a}(x) \sim \frac{2}{\delta_{s}}\right\}_{p r}^{4} x_{v} \rho^{2}
$$

IS THE INSTANTON SOLMTIIN IN THE SO-QALCED singular oalge Ha: ARE THE 't Hoort symrons, ai cocoun ingices,

ρ is the instatiton rajius we should integante over AND wiLe TAKE A MEARS JALUE $S_{0} \sim 0.5$ fm.

If WE BEVICNE THAT THE NON-PENTURBATIVE HOMERON is EsSENTIALCY A TWO-GUON STATE WE CAN HOPE FROM THAT TO CONSTRUET A \$r. THEY TAKE AS A RFFERENCE THE D-L Pomeran WHict LEADS TO

$$
\phi_{3}=\phi_{1}=\langle++1++\rangle=\bar{u}_{+}\left(\phi_{1}^{\prime}\right) \gamma^{r} u_{+}\left(\phi_{1}\right)\left[{ }^{3} \beta D(t) F_{1}(t)\right]_{+}^{2} \hat{u}_{+}\left(\phi_{2}^{\prime}\right) \gamma_{r} r_{\alpha}
$$

$D(t)$ is the Pomeron propagator, $F_{1}(t)$ the elastic FORM FACTOR AND \quad SN $1.8 \mathrm{GeV}^{2}$ A PHENDMENOLDGicac COUPLING CONSTANT.

In tais ease tr Reads (FACTORIzATION)

$$
\begin{aligned}
& \phi_{s}=\langle++1+-\rangle=i M_{N} G_{A}^{i m r} .(t) \bar{u}_{+}\left(p_{1}^{\prime}\right) \gamma_{r} u\left(p_{1}\right)\left[\frac{2}{g_{s}}\right]^{2}\left\langle f^{\mu} \mid k^{2}\right\rangle 3 \beta D(t) F_{i}(t \\
& \bar{u}_{+}\left(p_{2}^{\prime}\right){ }_{r}^{\gamma} u_{+}\left(p_{2}\right)
\end{aligned}
$$

f^{f} is the ROMERON wANE FUNCTion AND $\left\langle+^{\mu} \mid k^{2}\right\rangle$ GAN BE TAKE AS THE AVERAGE SQuARE MOMENTUM of GLGONS in THE TOMERON $\left\langle k^{2}\right\rangle$ GGNON SIRTUANTT)
If $\partial N E$ USES THE STANIARD EXPRESSiON for P WITH $t_{2}=t_{4}=0$ ONE GETS IN THE LIXIT of sTate

$$
P=\sin \theta+\sqrt{2} G_{A}^{i \operatorname{cin}}(-t) \frac{\left.M_{N} \rho_{0}^{4}<k^{2}\right)}{3 \beta F_{1}(t) g_{s}^{2}}+\ldots .
$$

Since $F_{1}(t) \rightarrow 1$ ONE GETS

$$
P=P_{0} \sin \theta / 2 \text { with } \quad P_{0}=4 \sqrt{2} \frac{G_{4}^{\text {int }}(0) M_{N} \rho_{0}^{4}\left\langle k^{2}\right\}}{3 \beta \delta_{s}^{2}}
$$

Numerical estimate
They take $G_{A}^{\text {init }}(0) \sim 0.5,\left\langle k^{2}\right\rangle=(0.4 \mathrm{GeV})^{2}$ which $\left(S E E\right.$, CORRESPONDS APPROXIMATELY TO $g_{s} \sim 2 \quad\left(\alpha_{s}=g_{s}^{2} / 4 \pi\right)$ ESTMMET

$$
\Rightarrow \quad P_{0} \sim 0.8
$$

NOTE LAN CHANGE THESE PARAMETERS $\left\langle k^{2}\right\rangle \rightarrow$ $g_{S} \rightarrow$ AN' $G_{A}^{i m i n} \rightarrow$
WHAT DOES IT MEAN??

FIG. 11. Mena transverce moneatum of the gheoms in varimat 1 $(1 p\rangle=\mid$ and $)$ (broken linas) and in variant $2(|p\rangle=|u D|)$ (coatianone curves). The symbols $\{8\}$ and $\{10\}$ indicate thet ave averaing was performed for σ_{m} or $\sigma_{i n 0!}$, respectively.

FIG. 12. Dependence of α_{s} in varinalis 1 and 2 on the diquart sadim.
B. G. Zentriov and B. Z. Kopeliovich

Sov. T. Part. Nuch. 22 (1991) 67

FIG. 2. The value of the forward polarization slope P_{0} [Eq. (10)] vs s (in GeV^{2}). The crosses indicate data from Ref. [21]; the diamond, data from Ref. [22]; the square, data from Ref. [23]; the dash, data from Ref. [24]; and the star, data from Ref.
[25]. The solid line is drawn through the mean value $P_{0}=0.83$.

For TlPomenon exch. We expect bike
FOR PHOTON EXCH. $\phi_{5}-\sqrt{-t} f_{+-}(s) \quad p_{1}=t_{3}-f_{+}(s)$
$J_{+-}(s)$ AND $f_{++}(s)$ same Everay ge?.
$\Rightarrow \quad P \sim \sqrt{-t}$ not Pu $\operatorname{tin} \%$
This P_{0} correstongs to g-exctanaf such tat

$$
\text { Pub } \sqrt{-t} 1 / \sqrt{9}-\operatorname{lin} \theta
$$

How large is the pomeron - Flip COUPLING TO THE NUCLEON?

Various sources of information
1- Models relying on high energy pp polarization Data (plan $\geqslant 45$ GeV (e)

* Impact picture (BSW-1979)
remember for $|t|<\mid \operatorname{GeV}^{2} \quad 1 \%$ TO 2% of A_{N}. comes from CNI

WE FIND THAT FOR $100 \mathrm{GeV} / \mathrm{l}$ ANS 300 gev

$$
\text { Re } s \text { and } I_{m} \lambda_{s}<1 \%
$$

(RECALL $\left.\quad \phi_{S}=r_{s} \sqrt{-\frac{t}{m 2}} \operatorname{Im} \phi_{+}\right)$
PURE CNI WILL NOT BE AFFECTED BY $\phi_{S}^{\text {Nad }} \neq 0$

* Another simple eikonal model leads

To the same conclusion if use correct dATA!!
2. Models relying on accurate A_{N} for $T^{+} p$

* B. hofeviovich fits $E=A_{N}\left(T^{+}\right)+A_{N}\left(R^{-}\right)$

$$
\begin{aligned}
& \sum-\sqrt{-\theta_{\alpha}}-\lambda\left(\frac{I_{m++}}{I_{\text {m }} \hat{r}_{++}}\right) \text {with } \lambda=R_{e f+}\left(\operatorname{Im} P_{++}\right. \\
& H E \text { FiaTs } \quad 2=(0.0 \leq \pm 0.0)
\end{aligned}
$$

* A.MARTIN and H.NAVELET (T.THYS.G $4(1978) 647$) USE LESS ACCURATE DATA ANS GET $\lambda=-0.04 \pm$?

3. DYNAMICAL MODELS

* Boreswor ch al. (Sos. T. Nuch. Furs. 27 (1978) 452)

From Tit SATA GET A REBUT CONQISTANT - W:̈m THE previous on s $=$ S
\star
CAN EXPECT AN INTERFERENCE COMING FROM THE ODDERUN CC =-1, $C=C$ WHICH GENERATES A REAL FART. FOR AT

$$
\begin{aligned}
& \ldots \quad \phi_{5}^{N_{n-1}}=0 \\
& \cdots-\phi_{5}^{N_{n d}} \neq 0
\end{aligned}
$$

h.gentiol and w. majenjtto

Lett. Nuovo Cimato $\leqslant 3$ (1978) 281

and the important momentum transfers are $|t|=1 / \ln (s)$ s_{0}). The spin-flip residue of the pomeron is proportional to $f_{2}\left(b_{0}\right)$, so that the spin-flip amplitude does not die away with increasing energy at fixed t.

Thus, the N and Δ contributions to the spin-flip residue of the $P\left(P^{\prime}\right)$ pole cancel to a great extent, whereas in the case of the amplitude with $I_{8}=1$ (the ρ pole), to which the N and Δ contribute with opposite signs, 2

From P $P(T \pm p)$ DATA
AT to revile

FIG. 11. 2-The t-depeodace of $\left.r_{0}=\mid T_{-}^{0} \sqrt{5 d-t}\right) \mid$. Toll: b-the t-dependence of the phase difference φ_{0}°. $-\rho_{s}^{\circ}$.

$$
S_{0}=1 \mathrm{Q}_{\mathrm{e}} \mathrm{~V}^{2}
$$

Borrekov or al
Sob. J. Null. PHys.

$$
27(1978) 432
$$

Attempts to improve the accuracy of the CNI analyzing power

Elliot LEADER
Birbeck College
London WC1E 7HX

My survey of polarimeters was presented to the RIKEN BNL Workshop on Perturbative $Q C D$ as a Probe of Hadron Structure and a summary will appear in those proceedings. One of the most promising polarimeters is based on interference between electromagnetic and hadronic amplitudes. Its analyzing power A_{N} was thought to be exactly calculable, but it turns out that this claim rests upon the assumption that all hadronic helicity-flip amplitudes vanish at high energies and are negligible in the RHIC region. This assumption is probably a good approximate statement, but can not be proved rigorously.

Here I wish to explore to what extent one can learn about these helicity amplitudes from experiments at RHIC.

Surprisingly, it turns out that information useful to both the above can be obtained in principle from a study of the t-dependence of the cross-section asymmetries associated with A_{N} and $A_{N N}$ at small t, even when the beam polarization is unknown. Alas, however, Nature conspires to make this method of little practical use. Nonetheless, in studying the structure of the contributions to A_{N} we have succeeded in simplifying its form so that it depends on only one unknown parameter, the imaginary part of the asymptotic part of the ϕ_{5} amplitude.

We consider $p p$ collisions in the collider mode at small momentum transfer when the bunch polarizations are arranged so that one can measure the cross-section asymmetries associated with A_{N} for each beam (one beam unpolarized) and with $A_{N N}$ (both beams polarized).

We assume $\sigma_{\text {TOT }}$ (hadronic) is known reasonably accurately. Let $P_{1,2}$ be the unknown, but non-zero, polarizations of the beams. The transparencies outline the main ideas of this approach and show why the method, in the end, fails to be of practical use.

Surprisingly seems can learn about hadronic helicity-flip via measurements with pold. beams, but without knasing value of poles $P_{1,2}$.

For very small t (Buttimor, Leader, Gotsman (978)

$$
\begin{aligned}
\frac{d \sigma}{d t} \sqrt{-t} A_{N} & =a_{N}+b_{N} t \\
\frac{d \sigma}{d t} t A_{N N} & =a_{N N}+b_{N N} t
\end{aligned}
$$

Tests \Rightarrow valid for $|t| \leq 0.01 \mathrm{GW}^{2}$
\Rightarrow no problem experimentally ($\simeq 40$ bins of $\Delta t=10^{-4}$)

Measured asymmetries ar

$$
P_{1,2} \sqrt{-t} A_{N} \frac{d \sigma}{d r}=P_{1,2}\left[a_{N}+b_{N} t\right]
$$

$$
P_{1} P_{2} t A_{N N} \frac{d \sigma}{d t}=P_{1} P_{2}\left[a_{N N}+b_{N N} t\right]
$$

Measure slopes and intercepts of straight lines yields:

$$
\begin{aligned}
& \frac{a_{N}}{b_{N}}=\frac{\left(P_{1,2} a_{N}\right)^{E X P T}}{\left(P_{1,2} b_{N}\right)} \text { EXDT } \\
& \frac{a_{N N}}{b_{N N}}=\frac{\left(P_{1} P_{2} a_{N N}\right)^{\text {EXPT }}}{\left(P_{1} P_{2} b_{N N}\right)} \text { EXPT }
\end{aligned}
$$

Thus P_{1}, P_{2} cancel out. Also can use

$$
\frac{a_{N}^{2}}{a_{N N}}=\frac{\left(P_{1} a_{N}\right)^{E \times P T}\left(P_{2} a_{N}\right)^{E \times P ;}}{\left(P_{1} P_{2} a_{N N}\right)^{E \times P T}}
$$

Coefficient $a_{N}, b_{N}, a_{N N}, b_{N N}$ depend on 2 unknown hadromi ample, $\phi_{2}+\phi_{5}$. Seems to give 3 relations between 4 unknowns. But
i) Study of lower energy data \Rightarrow only $\operatorname{Im} \phi_{2}, \operatorname{Im} \phi_{5}$ relevant asymptotically
ii) Theorem (Trueman, Pliers) $\Rightarrow \operatorname{Im} \phi_{2}=0$ at $t=0$ for daninance of $P C=+1$ exchange

Consequences:
$A_{N N}$ no good: $a_{N N}=0$

But A_{N} measurement seems to be able to fix $\operatorname{Im} \phi_{5}$?

$$
\begin{aligned}
& a_{N}=\frac{x}{2}-\operatorname{Im} r_{5} \\
& b_{N}=-\frac{x}{2}\left(\beta_{1}+\beta_{2}+B / 2\right)+\operatorname{Im} r_{5}\left(2 \beta_{1}+b_{5}+\frac{x^{2}}{4 m^{2}}\right)
\end{aligned}
$$

where $\beta_{1,2}$ are slopes of em. $F_{1,2}\left(q^{2}\right)$
$B=$ slope of $d \sigma / d t$

$$
b_{5}=\text { slope of } \phi_{5}
$$

Know $\quad \beta_{1}+\beta_{2}+B / 2 \approx 13 \mathrm{GV}{ }^{-2}$
Also $\beta_{1} \approx \beta_{2}$ and expect

$$
\begin{aligned}
& b_{5} \simeq B / 2 \\
\therefore & \left(2 \beta_{1}+b_{5}+\frac{k^{2}}{4 m^{2}}\right) \simeq\left(\beta_{1}+\beta_{2}+\frac{B}{2}+\frac{x^{2}}{4 m^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1< \\
\therefore & \frac{x^{2}}{4 m^{2}} \approx 1
\end{aligned}
$$

\therefore difference between $\left(2 \beta_{1}+b_{5}+\frac{x^{2}}{4 m^{2}}\right)$
and $\left(\beta_{1}+\beta_{2}+\frac{B}{2}\right)$ is small; also not accurately known. Hence

$$
b_{N} \approx\left(\beta_{1}+\beta_{2}+\frac{B}{2}\right)\left[-\frac{k}{2}+I m r_{s}\right]
$$

and InT In $_{5}$ disappeas in The ration $\frac{a_{N}}{b_{N}} \quad 1$

So method fails!

Positive side: We have
much better idea of structure of A_{N} in CNI region at RHIC energies.

DISPERSION RELATION APPROACH TO SPIN FLIP

N.H. BUTTIMORE
University of Dublin
Hamilton Building
Dublin 2, Ireland

1. The asymmetry A_{N} for elastic $p p$ scattering in the Coulomb-Nuclear interference region at high energies may be expanded in powers of t according to

$$
\frac{m}{\sqrt{-t}} A_{N}=\frac{\left(2 \operatorname{Im} r_{5}-\kappa_{p}\right) t_{c} / t+2 \rho \operatorname{Im} r_{5}-2 \operatorname{Re} r_{5}}{1+\left(t_{c} / t+\rho\right)^{2}}
$$

where $t_{c}=8 \alpha \pi / \sigma_{\text {tot }}$ corresponds to interference,

$$
\begin{gathered}
r_{5}=\frac{m}{\sqrt{-t}} \frac{2 \phi_{5}}{\operatorname{Im}\left(\phi_{1}+\phi_{3}\right)}, \\
\rho=\frac{\operatorname{Re}\left(\phi_{1}+\phi_{3}\right)}{\operatorname{Im}\left(\phi_{1}+\phi_{3}\right)} \\
\kappa_{p}=\mu_{p}-1=1.793 .
\end{gathered}
$$

An expression for somewhat larger values of $-t$ is given in equation (4) of PR 51, 3944 (1995). The amplitude ϕ_{2} has been ignored here but will be included in item 3. The maximum A_{N} in the interference region is controlled by $\kappa_{p}-2 \operatorname{Im} r_{5}$.
2. A fit to the E704 data indicates that the hadronic helicity flip non-flip ratio a)

$$
\begin{gathered}
\operatorname{Im} r_{5}=15 \% \pm 31 \% \\
\operatorname{Re} r_{5}=-2.5 \% \pm 3.9 \%
\end{gathered}
$$

in the case where data in the interference region only is used.
b)

$$
\begin{gathered}
\operatorname{Im} r_{5}=8 \% \pm 14 \% \\
\operatorname{Re} r_{5}=-1.0 \% \pm 0.4 \%
\end{gathered}
$$

in the case where the data in both the interference region and extending to $-t=0.6(\mathrm{GeV} / \mathrm{c})^{2}$ at laboratory momenta 150 to $300(\mathrm{GeV} / \mathrm{c})$ are employed.

We conclude that the real part of r_{5} is sensitive to the larger $-t$ asymmetries A_{N}, as expected from the above expression where $\rho \operatorname{Im} r_{5}$ is more prominent at larger $-t$ values, ρ being small at the energies considered.
3. The hadronic double helicity flip amplitude $\phi_{2}=\langle++| \phi|--\rangle$ does not necessarily vanish at $t=0$ and, if not negligible, would appear in the numerator of the expression for $(m / \sqrt{-t}) A_{N}$ in the form

$$
\left[2 \operatorname{Im} r_{5}-\kappa_{p}\left(1+\frac{1}{2} \operatorname{Im} r_{2}\right)\right] t_{c} / t+\left(2 \rho+\operatorname{Re} r_{5}\right) \operatorname{Im} r_{5}-\left(2+\operatorname{Im} r_{2}\right) \operatorname{Re} r_{5}
$$

The maximum of the asymmetry in the CNI region is now proportional to

$$
\kappa_{p}\left(1+\frac{1}{2} \operatorname{Im} r_{2}\right)-2 \operatorname{Im} r_{5}
$$

so that either $I=\operatorname{Im} r_{5}$ or $-\xi=\operatorname{Im} r_{2}=\Delta \sigma_{\mathrm{T}} / \sigma_{\text {tot }}$, or both, may alter the maximum. Here $\Delta \sigma_{\mathrm{T}}$ refers to the difference between transversely polarized total cross sections.
4. Suppose that a maximum of the asymmetry in the CNI region is known experimentally. $\operatorname{Im} r_{5}$ and $\operatorname{Im} r_{2}$ contribute as we have seen. The rô le of ρ and the Bethe phase δ is non-negligible in this maximum. To first order, the contributions of such quantities is given in the table. Positive values of $\operatorname{Im} r_{5}$ and $\Delta \sigma_{\mathrm{T}} / \sigma_{\text {tot }}=2 \xi$ decrease the maximum

RIKEN BUL RESEARCH CENTER Hadron Helicity - Flip at RHic Energies Dispersion relation approach to spin flip
N. H. Buttimore

1:30 pm July 28, 1997 Room 2-34 in 510 SUMMARY

1. Asymmetry A_{N} and O_{2}
2. Role of $I_{m} \varphi_{s}$ and Req s in A_{N}
3. Analyticity and helicity-flip
4. Bounds on hadronic spin flip
5. Conclusions
(2) For $s \geq 50 \mathrm{GeV}^{2}, A_{N}$ changes sign around $|\ell| \approx 0.3$ to $0.4(\mathrm{GeV} / c)^{2}$ from positive to negative and reaches a negative minimum followed by a sharp zero crossing in the region where the diffractive dip in the differentaal cross section develops around $|t| \approx 1.2(\mathrm{GeV} / c)^{2}$ and possibly remains positive at larger $|t|$ values.

These features have stimulated a number of speculations on the existence of a hadronic telicity single-flip contribution, ϕ_{5}^{h}, that does not necessarily decrease as $s^{-1 / 2}$.

Recent elastic $p p$ scattering results at very small angiles from Fermilab help to advance our understanding of the hadronic single-flip helicity amplitude. By using the polarized proton beam at Fermilab and scattering on a recoil-sensitive scintillator target, it was possible for the first time to measure the analyzing power of $p p$ scattering at very small $|t|$ values $\left[1.5 \times 10^{-3} \leq|t| \leq\right.$ $\left.5.0 \times 10^{-2}(\mathrm{GeV} / c)^{2}\right]$ around $200 \mathrm{GeV} / c$ [13]. This momentum transfer range was not accessible in other experiments that used unpolarized beams and polarized targets at comparably high energies. The data set around $200 \mathrm{GeV} / \mathrm{c}$ that we are considering in this study spans $1.5 \times 10^{-3} \leq|t| \leq 0.6(\mathrm{GeV} / c)^{2}$. Over this region, the asymmetry can be expressed as
$A_{N}=\frac{\sqrt{-t}}{m} \frac{(\mu-1) z-2 z I+2(\rho I-R)(1+t / r)}{1+(\rho-z)^{2}-\frac{t}{2 m^{2}}\left\{((\mu-1) z-2 R]^{2}+4 I^{2}\right\}}$
where $Z=t_{c} /(-t), t_{R}=8 \pi \alpha / \sigma_{t \Delta t}^{(4)}$ and $I=S_{M} r_{s}, R=R e r_{s}$.

FIG. 1. The three curves represent the fits to the $p p$ symmerry data in the $1.5 \times 10^{-3} \leq|t| \leq 0.6(\mathrm{GeV} / c)^{2}$ range we have considered (see Table I). The solid line corresponds to 1 , dashed to 2 , and dotted to 3 .

BRIEF REPORTS

TABLE I. Results of the evaluation of the single-flip helicity amplitude for $p p$ $\sigma_{\text {tot }}=39 \mathrm{mb}$ and when an error equals zero it implies that the variable is fixed to a
$\left.\begin{array}{cccccc}\hline \text { No. } & R & I & \begin{array}{c}\tau \\ {\left[(\mathrm{GeV} / \mathrm{c})^{2}\right]}\end{array} & \rho & \begin{array}{c}P_{L} \text { range } \\ (\mathrm{GeV} / c)\end{array} \\ \hline 1 & -0.044 \pm 0.013 & 0.295 \pm 0.207 & 0.440 \pm 0.018 & -0.02 & 150-205 \\ 2 & -0.010 \pm 0.004 & 0.082 \pm 0.138 & 0.285 \pm 0.036 & -0.02 & 150-300 \\ 3 & -0.037 \pm 0.022 & 0.078 \pm 0.182 & 0.389 \pm 0.017 & -0.10 & 45-205 \\ 4 & -0.025 \pm 0.039 & 0.145 \pm 0.311 & 0.450 \pm 0.000 & -0.02 & 185-200 \\ 5 & -0.041 \pm 0.002 & 0.000 \pm 0.000 & 0.440 \pm 0.009 & -0.10 & 45-205\end{array}\right\}$

In ϕ_{2} and Um ϕ_{5} in low t maximum of $A_{N}^{\text {I. }}$

$$
\frac{m}{\sqrt{-t}} \frac{g_{m} \phi_{5}}{g_{m} \phi_{+}}=I, \quad \frac{-g_{m} \phi_{2}}{g_{m}\left(\phi_{1}+\phi_{3}\right)}=3
$$

I

Since $\frac{\mu-1}{2}(1-\xi)-I$ controls the maximum of the asymmetry A_{N} in the interference region, both I and $\xi=\frac{\frac{1}{2} \Delta \sigma_{\text {wot }}^{\top}}{\sigma_{\text {tot }}}$ may alter the maximum.

[^2]For $N N \rightarrow N N$ D.V. Dug, Nul.Thys. BS, $29{ }^{42}$ (1968) writes a dispersion relation for

$$
\lambda=\frac{\phi_{5}}{\sin \theta}=-\frac{m}{\sqrt{5}}\left(\alpha+\beta+\frac{2 \gamma}{\sin \theta}\right)
$$

$\alpha, \beta, \gamma, \delta, \varepsilon$ being Eoldberger, Nambu, Oehme amplitudes. In terms of s and u

$$
\operatorname{Re} \lambda(s)-\sum_{i} \frac{\Gamma:}{u-u:}-\frac{1}{\pi} \int^{\infty} \frac{g_{m} \lambda\left(s^{\prime}\right) d s^{\prime}}{s^{\prime}-s}-\frac{1}{\pi}\left(\frac{9 m \lambda\left(u^{\prime}\right) d u}{u^{\prime}-u}\right.
$$

= same expression with s replaced by $4 \mathrm{~m}^{2}$. Here $t=0$, so that $u=4 \mathrm{~m}^{2}-s$. A subtraction at threshold $5=4 \mathrm{~m}^{2}$ ensures convergence of $\int s$. The umphyrical cont from $u=4 \mathrm{~m}^{2}$ to $u=4 \mathrm{~m}^{2}$ has been approximated by a number of poles with coupling constants proportional to Γ_{i}.

Fig. 3.

Fig. 1. The non-s-wave parts of $\operatorname{lm} \epsilon \mathrm{pp}$ and $\operatorname{lm} \beta$ pp. The continuous curve is a fit (by eye) to the former, and the dashed curve is a fit to the latter; these curves have been used in computing dispersion integrals.

Fig. 2. The non-s-wave parts of (a) $\operatorname{lm} \epsilon_{\mathrm{pn}}$ and (b) $\operatorname{lm} \beta \mathrm{pn}$. The continuous curves are the empirical fits which have been used in computing dispersion integrals. The experimental points shown by broken lines are considered to be less reliable than the rest for reasons given in the text. Fig. 3. (a) $\operatorname{lm}(i c / \sin \theta)_{\mathrm{pp}}$, (b) $(i c / \sin \theta)_{\mathrm{pn}}$. The dashed curves are the empirical fits which have been used in computing dispersion integrals.

$$
44
$$

Polarimetry at high energies with $p p$ elastic scattering

Boris KOPELIOVICH

Heidelberg/Dubna

Polarimetry at high energies with pp elastic scattering

Boris Kopeliovich (Heidelberg /Dubna)

RIKEN-BNL
Center
Aug. 1997

The analyzing power A_{N} of pp elastic scutering is known to vanish at high energies. This is because the spin-flip amplitude decreases with energy. There are, however, two regions (at least!) of momentum transfer, where A_{N} is nearly energy-independent and relatively large.
(1) $|t| \sim\left(10^{-3}-10^{-2}\right) \mathrm{GeV}^{2} \quad$ Coulomb-Nuclear

Interference (CNI)
The energy-independent electromagnetic spin-fleip amplitude interferes with the hadrouic non -flip amplitude.
(2) $|t| \sim(1-1.5) \mathrm{GeV}^{2}$ In this region the the hadronic spin -flip imaginary part of chat sign leading to the pip observed in the differential cross section. In the vicinity of the dap the hadronic spin non-fleip amplitude is as small as the spin-flip sue (at any energy!) providing a maximal polarization

(1) CNI polarimeter

$$
\begin{aligned}
& A_{N}(t)=A_{N}\left(t_{P}\right) \frac{4 y^{3 / 2}}{3 y^{2}+1} \\
& y=|t| t_{P} ; \quad t_{P}=\frac{8 \sqrt{3} \pi \alpha}{\sigma_{\text {tot }}^{P P}} \\
& A_{N}\left(t_{P}\right)=\frac{\sqrt{3}}{4} \frac{\sqrt{t_{P}}}{m_{P}}\left(\mu_{P}-1\right)
\end{aligned}
$$

B.K. \& L. Lapidus 1974
N. Buttimore, E. Gotsman \& E. Leader 1978

Energy-independent Reliably predicted
B.K. \& B. Zakharov 1989
! Uncertanty $\frac{\text { spin-flue to the hadronic }}{\text { lip }}$

$$
\begin{aligned}
& f_{h}(t)=f_{0}(t)\left(1+r \frac{\sqrt{1 t \mid}}{m_{p}} \vec{G} \vec{n}\right) \\
& A_{N}(t)=\left.A_{N}(t)\right|_{r=0}\left(1-\frac{2 \dot{r}}{\mu_{p}-1}\right) \\
& \quad \text { hadronic spin-flip } \\
& \text { cerrection }
\end{aligned}
$$

One cannot use CNI as a polarimeter without any knowledge of r !
T.L. Trueman 1996

To what extend can we reduce the uncertainty of the CNI polarimetry using available infomation about r ?

Experimental information
Polarization in elastic $\pi^{ \pm} p$ scattering is due to interference if the pomeron non -flip amplitude with Reggeon $(\rho+f)$ spin-feip, and vice versa.

The dominant ρ spin-flip term cancels in the sum

$$
\begin{align*}
& A_{N}^{\pi^{+} P}(t)+A_{N}^{\pi-P}(t)=\left(r_{\mathbb{P}}+r_{f}\right) \frac{4 \operatorname{ctg}\left(\frac{\pi^{\alpha}}{2}\right) R(s)}{(1+R(s))^{2}} \tag{*}\\
& R(s)=R\left(s / s_{0}\right)^{\alpha_{f}-\alpha_{\mathbb{R}}} \\
& \alpha_{\mathbb{R}}=1.1+0.25 t \\
& \alpha_{f}=0.5+0.9 t
\end{align*} \quad \text { Fit to } G_{\text {tot }}^{\pi^{ \pm} p}: \quad R=3.74 \pm 0.03
$$

Fit with (*) to the data on $A_{N}^{\pi^{ \pm} p}(t)$ at energies $6 \div 14 \mathrm{GeV}$ results in

$$
!r_{P}+r_{f}=0.059 \pm 0.008
$$

B. K. This workshop
In the model of f-dominance for the Pomeron $r_{\text {止 }}=r_{f} \Rightarrow r_{\mathbb{P}} \approx 0.03$, otherwise, this result can be used as an upper limit for $r_{p} \leqslant 0.06$ (pounded that r_{r} and r_{p} have the same sign) It is very improbable that r_{p}) can increase more than by factor of 2 in the RHIC energy range.

CNI in PP elastic scattering
The ETO4 data, although with low statistics, put limits on a possible value of r, ie. restrict the uncertainty of the CNI polarimetry

If r is imaginary ImP $\leqslant 0.15$
For an arbitrary phase of r Tm $r \leqslant 0.3$ This ends up, respectively, with 15% or 30% error in the this workshop beam polarization measurement

- CNI in pA elastic scattering If $r=0$, the CNI formulas look the same as for $P P$, except the replacement $t_{p}^{p A}=t_{p}^{p p}\left(Z \frac{G_{\text {tot }}^{p P}}{\epsilon_{\text {tot }}^{p A}}\right)$, but $A_{N}^{p A}(t)$ changes sign
For ${ }_{p} C$ interaction $\quad t_{p}^{P C}=2.3 \cdot 10^{-3} \mathrm{GeV}^{-2}$ and in the maximum

$$
A_{N}^{p c}\left(t_{p}^{p}\right)=0.039
$$

If, however, $r \neq 0$ on should calculate $r^{P A}$, which may be different from $r^{P P}$.
! Amazingly, $r^{P A}(t)=r^{P P}(t)$, in Glauber approach, and even including the Gribov's inelastic shadowing corrections.
Using the most precise $E 704$ result for

$$
A_{N}^{P C}=0.024 \pm 0.09
$$

we arrive at an estimate

$$
r=0.22 \pm 0.26
$$

Summary ETc 3

$$
r=\left\{\begin{array}{l}
0.0 \pm 0.15 \\
0.0 \pm 0.3 \\
0.22 \pm 0.26
\end{array}\right.
$$

Theoretical expectations
Perturbative $Q C D$
The quark-gluon vertex $\bar{q} \gamma_{\mu} q$ conserves helicity. Therefore it is natural to expect $r \ll 1$ (naively, $r=0$).

However, the proton helicity \neq the sum of the quark helicities, since they have transverse motion.

Evaluation in the double -gluon (Born) approximation
 If the proton is a symmetric $3 q$-configuration, $\quad, \quad r=0$. If, however, the dominant configuration contains a compact diguark with radius R_{D}, then $r \neq 0$
B. K. \& B. Zakharov 1989

Expectation
$r \leqslant 0.1$

- Pion-exchange model for the Pomeron

One can switch from the quark -gluon representation to the hadronic basis
K. Boreskov, A.Grigoryan,
A.Kaidalov' \& I.Levintov' 1978

Due to strong cancelation between N and Δ the Pomerok spin-flip is very small

$$
r=0.06
$$

Conclusion: there is a nice consensus
between available experimental data and theoretical predictions for the hadronic spin-flip at high energies

$$
r \leqslant 0.1
$$

This implies that CNI polarimeter has accuracy of about 10% even without calibration (ie. measurement of r)
(2) Polarimetry with pp elastic scattering
at $t=1-1.5 \mathrm{GeV}^{2}$

Data for $A_{N}(t)$ in this region are available up to $E_{\angle a b}=300 \mathrm{GeV}$
B. K. One can measure the Lab left-right asymmetry on a fixed target at RHIC and use these data to evaluate roughly the beam polarization.

One can do, however, a much better job calibrating the polarimeter, making use of the relation

$$
A_{N}(t) \equiv P_{0}(t)
$$

The recoil proton in the fixed-target experiment has kinetic energy
$E_{k i n}=-\frac{t}{2 m_{p}}$, what is only $500 \div 600 \mathrm{MeV}$
at this energy the analysing power is known to be large, a few tens percent, and one can easily measure the recoil proton polarization $P_{0}(t)$. This is quite a standard measurement usually performed with a carbon polarimeter, which can be precisely calibrated at a low-energy machine, ing. at IUCF. The measurement of $P_{0}(t)$ can be done either at RHIC with unpolarized beam, or at other accelerators (CERN, INAL,

The suggested polarimeter provides an absolute normalization of $A_{N}(t)$ and contains no uncertainty, which was not under control. The target may be cither a proton $j^{e t}$, or a carbon fail. The counting rate is expected to be high, about 10^{3} per minute The uncertainty of the CNI w. Guryn palarimeter can be fixed, and one gets two polarimeters for selfcontrol

RIKEN BNL Center Symposium/Workshops

Title: \quad Nonequilibrium Many-body Dynamics
Organizers: Miklos Gyulassy and Michael Creutz
Dates: September 22-25, 1997
Title: \quad Physics with Parallel Processors
Organizers: TBD
Dates: January, 1998 (tentative)

For information please contact:
Ms. Pamela Esposito
RIKEN BNL Research Center
Building 510A, Brookhaven National Laboratory
Upton, NY 11973, USA
Phone: (516)344-3097 Fax: (516)344-4067
E-Mail: rikenbnl@bnl.gov
Homepage: http://penguin.phy.bnl.gov/www/riken.html

[^0]: 10 GeV Borghini 1971 11.8 GeV Kramer 1977

 14 GeV Borthini 1971
 17.5 GeV Bargini 1971

 24 Ger Crbb 1971
 45 GeV Gaudot 1976
 100 GeV Snyder 1978
 300 GeV Sayder 1978

[^1]: ${ }^{1}$ E-MAIL: SOFFER@CPT.UNIV-MRS.FR

[^2]: Though a ρ value of 0.1 contributes al a level of 8.7% it is a correction that may reliably be made. A positive value of ρ enhances the asymmetry maximum in pp elastic scattering.
 A_{x} and the differential cross section should be fit to the respective data near the forward direction to determine β, R, and ξ, respecting the constraint

