HADRON SPIN-FLIP AT RHIC ENERGIES

July 21 - August 22, 1997

Organizers
Elliot Leader and T. L. Trueman

RIKEN BNL Research Center
Building 510, Brookhaven National Laboratory, Upton, NY 11973, USA
Volume 1 - Open Standards for Cascade Models for RHIC - BNL-64722
June 23-27, 1997 - Organizer - Miklos Gyulassy

Volume 2 - Perturbative QCD as a Probe of Hadron Structure - BNL-64723
July 14-25, 1997 - Organizers Robert Jaffe and George Sterman
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Preface to the Series

The RIKEN BNL Research Center was established this April at Brookhaven National Laboratory. It is funded by the “Rikagaku Kenkysho” (Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC physics through nurturing of a new generation of young physicists.

For the first year, the Center will have only a Theory Group, with an Experimental Group to be structured later. The Theory Group will consist of about 12-15 Postdocs and Fellows, and plans to have an active Visiting Scientist program. A 0.6 teraflop parallel processor will be completed at the Center by the end of this year. In addition, the Center organizes workshops centered on specific problems in strong interactions.

Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form a proceedings, which can therefore be available within a short time.

T.D. Lee
July 4, 1997
CONTENTS

Preface to the Series ... i
List of Participants .. iii

Introduction
T.L. Trueman ... 1

Hadronic Spin-Flip Contribution to A_N
T.L. Trueman ... 3

Review of polarization in pp elastic scattering at high energy and phenomenology
Jacques Soffer ... 11

Attempts to improve the accuracy of the CNI analyzing power
Elliot Leader .. 27

Dispersion relation approach to spin flip
N.H. Buttimore ... 35

Polarimetry at high energies with pp elastic scattering
Boris Kopeliovich .. 45

RIKEN BNL Center Symposia/Workshops 55
Participants

N.H. Buttimore
University of Dublin
Hamilton Building
Dublin 2, Ireland

Boris Kopeliovich
Max-Planck-Institute
Heidelberg
Germany

Elliot Leader - (Organizer)
Birbeck College
London WC1E 7HX
UK

Jacques Soffer
Centre de Physique Théorique
CNRS Luminy Case 907
13288 Marseille Cedex 09 France

T. Laurence Trueman - (Organizer)
Physics Department
Brookhaven National Laboratory
Upton, NY 11973
INTRODUCTION

From July 21 to August 22, 1997 a working group sponsored by the RIKEN BNL Research Center was convened to consider "Hadron Spin-Flip at RHIC Energies." The original motivation for this arose from the importance of understanding the hadronic part of the proton-proton spin flip amplitude in using the Coulomb-Nuclear Interference for polarimetry. This is a very difficult, non-perturbative problem and it is not possible to make a calculation with controlled approximations, so a number of approaches were followed:

1. methods to extract the necessary information from past experiments and from RHIC experiments were examined;
2. phenomenological, Regge models - some of them very old - were reviewed;
3. the predictions of several non-perturbative theoretical models were evaluated;
4. the use of nuclei for the CNI experiment was quantitatively considered;
5. alternative methods of polarimetry were critically studied. These included Primikoff effect, large-t pp scattering, and pe double spin asymmetry.

The first talk of the working group by Elliot Leader was presented at the contemporaneous workshop on Perturbative QCD as a Probe of Hadron Structure, and his transparencies are included in that Workshop Proceedings. A selection of the others are included here.

There was also active participation in our work by Y. Makdisi, W. Guryn, G. Bunce, F. Paige, M. Tannenbaum and T. Rosen, all from BNL, and S. MacDowell, a visitor from Yale.

Several research papers based on this work are in preparation. Thanks to Elliot Leader, whose idea it was to convene this group, and to Kopeliovich, Soffer and Buttimore for their work and stimulating collaboration.

Thanks to Brookhaven National Laboratory and to the U.S. Department of Energy for providing the facilities to hold this workshop.

T.L. Trueman
Co-Organizer
Hadronic Spin-Flip Contribution to A_N

T.L. Trueman
Brookhaven National Laboratory
Upton, New York 11973

The hadronic part of the $p-p$ single flip amplitude ϕ_s is the center of our investigation because the uncertainty in its value prevents the Coulomb-Nuclear-Interference (CNI) method from being a certain and precise absolute polarimeter. The first figure shows the measurable quantities that depend on ϕ_s that involve only initial state polarization. The second figure shows the data from Fermilab E704. This is the only high energy data available in the region of t for which A_N is enhanced by the CNI effect. This is well fit by $\phi_s = 0$, indicated in the figure by $\tau = 0$ but the error is ± 0.15. In this section $\tau = \sqrt{-t/m\phi_s/\phi_4}$. That fit is the best fit with $\text{Im} \, \tau$ constrained to be zero. If that constraint is lifted the best fit, also shown, has a much bigger error, ± 3, and about the same χ^2.

The next figure shows the energy dependence of P at $t = -0.15$, the smallest value of t for which there is sufficient high energy data. The best fit to $a + b/\sqrt{p_L} + c/\sqrt{p_L}$ gives a non-zero asymptotic value for P.

A_{NN} depends on ϕ_s but it also depends sensitively on ϕ_2 and ϕ_4. If we assume that these last two vanish linearly with t, as would be the case with factorized Regge poles but is more general, then the parametrization shown is appropriate. The two pieces can cancel against each other simulating a pure CNI piece but with a shifted magnitude corresponding to the same shift in A_N. The size of A_{NN} is very small, probably unmeasurable at $pp \rightarrow pp$.

There are big double-spin asymmetries in $p-e$ scattering which are free of hadronic uncertainties. This has led Nurushev and collaborators to propose putting a proton beam onto a fixed polarized electron target. The symmetries are large only when the electron is longitudinally polarized, either A_{LL} or A_{SL}. The latter, relevant for transversely polarized beams, is shown in the last figure for $p_L = 100$ GeV/c and $p_L = 250$ GeV/c. The recoil electron energy is quite large, about 10 GeV/c and 55 GeV/c respectively and the recoil angle is about 2 mrad to the beam direction in both cases near the maximum asymmetry.
Measurable quantities depending on ϕ_5

\[
\frac{d\sigma}{dt} = \frac{2\pi}{s^2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2)
\]

\[
A_N \frac{d\sigma}{dt} = -\frac{4\pi}{s^2} \text{Im}(\phi_5^*(\phi_1 + \phi_2 + \phi_3 - \phi_4))
\]

\[
A_{NN} \frac{d\sigma}{dt} = \frac{4\pi}{s^2} (2|\phi_5|^2 + \text{Re}(\phi_1^*\phi_2 - \phi_3^*\phi_4))
\]

\[
A_{SL} \frac{d\sigma}{dt} = \frac{4\pi}{s^2} \text{Re}(\phi_5^*(\phi_1 + \phi_2 - \phi_3 + \phi_4))
\]

cf. Buttimore, Gotsman and Leader (1978)
Best fits to 704 data with and without \(\text{Im}(\tau) = 0 \)

\[
\begin{align*}
A_N &\quad t \\
0.04 &\quad 0.02 \quad 0.01 \\
0.06 &\quad 0.04 \\
0.02 &\quad 0.01 \\
\end{align*}
\]

- \(\tau = 0.0 \)
- \(\tau = 0.2 + 0.03 \) i
Energy dependence of P

at $t = -0.15 \text{ GeV}^2$

Best fit gives asymptotic value 2.3 ± 1.2

Pure CNI at 300 is 1.1

10 GeV Borghini 1971
11.8 GeV Kramer 1977
14 GeV Borghini 1971
17.5 GeV Borghini 1971
24 GeV Crabb 1977
45 GeV Gaudot 1976
100 GeV Snyder 1978
300 GeV Snyder 1978
\[A_{NN} \text{ for bounding spin-flip:} \]

If \[\text{Re}(\phi_1 \phi_2 - \phi_3 \phi_4) = 0 \]

then

\[A_{NN} \approx -\sqrt{\frac{16\pi}{(1 + \rho^2) \frac{d}{dx}}} \frac{\alpha}{m^2} (\mu - 1) \left(-\frac{(\mu - 1)\rho}{4} + \rho \text{Re} - \text{Im} \right) - 2 \frac{t}{m^2} |\tau|^2 \]

Small effect can be masked by very small \(\delta \):

\[
\begin{align*}
\phi_1 &= \phi_3 \\
\phi_2 &= -\phi_4 = -\delta \frac{t}{m^2} \phi_1,
\end{align*}
\]

Note that \(A_{SL} = 0 \) with this parametrization.

If \(\delta = 0 \) double spin asymmetry measures \(P^2/\tau L^2 \) and combined with single spin gives \(P L \) to 2-fold ambiguity
\[\tau = \delta = 0 \]

\[\tau = 0.1, \delta = -0.01 \]

\[P_{\text{apparent}}(\tau) = P_{\text{true}} \frac{A_{\text{NN}}(\tau \neq 0)}{A_{\text{NN}}(0)} \]

From AN:

\[\frac{P_{\text{app}}(0.1)}{P_{\text{true}}} = 0.9 \]

From ANN:

\[\frac{P_{\text{app}}(0.1)}{P_{\text{true}}} = \sqrt{\frac{A_{\text{NN}}(0.1, -0.01)}{A_{\text{NN}}(0)}} \]

consistent \(l \) = \(\sqrt{0.8} = 0.9 \)
p e double spin asymmetry

\[P_L = 100.6 \text{ GeV/c} \]

\[A_{SL} \]

\[P_L = 250.6 \text{ GeV/c} \]

\[A_{SL} \]
We start by recalling the difficulty of describing pp elastic scattering, which involves five complex helicity amplitudes $\phi_i(s, t)(i = 1, \ldots, 5)$. So, for each kinematic point, center-of-mass energy and momentum transfer, the full knowledge of this reaction requires the extraction from the data of nine real numbers, since one overall phase remains undetermined. Indeed this implies the need of many measurements; most of the possible twenty five ones have never been done at high energies. At $p_{\text{lab}} = 6$ GeV/c several spin observables have been measured at the ZGS (ANL) and we illustrate the method for an amplitude reconstruction. It leaves large uncertainties on the phase and the magnitude of the natural parity exchange amplitudes $\phi_1 - \phi_3$ and $\phi_2 + \phi_4$, which turn out to be the smallest ones. A rigorous positivity bound for $\text{Im} \phi_2(s, 0)$ has been derived long ago, which can be translated in terms of total cross sections in pure spin states, and it is obviously obeyed by the available data up to $p_{\text{lab}} = 12$ GeV/c.

We also recall the present experimental situation at high energies for the single-spin asymmetry A_N which has been measured at CERN, BNL and FNAL up to $p_{\text{lab}} = 300$ GeV/c. One should notice the scarcity and some lack of accuracy of these data which have explored only a limited range in momentum transfer. One observes that for $p_{\text{lab}} < 25$ GeV/c or so at fixed t, A_N decreases with increasing energy but its behavior at higher energies remains unclear. A simple Regge picture is unable to describe properly these data but in the high energy region an impact picture approach is shown to be rather successful. This model introduces a small flip-coupling of the Pomeron such that its contribution to the single-flip amplitude ϕ_5^F is non-zero and therefore it predicts that A_N does not vanish at very high energies. Here one should not forget that even if $\phi_5^P = 0$, the effect of the Coulomb-Nuclear interference (CNI) introduces a positive shift of A_N of the order of 1% to 2% up to $|t| = 1$ GeV2 or so. This is a sizeable effect when we compare it to the measured values. The magnitude and phase of ϕ_5 are crucial to decide if one can use this CNI effect in the very forward region ($t \gtrsim 10^{-3}$ GeV2) to calibrate at RHIC the degree of polarization of a high energy polarized proton beam. According to the impact picture model ϕ_5^F is so small in this region that it should not affect the pure CNI prediction.

Motivation

The smallness of the observed axial charge in p-p DIS might be due to chiral violating effects. Caninvoke instanton-like gluonic field configurations which reduce the axial charge carried by the quarks.

They propose to calculate an effective helicity flip coupling due to the interaction of these a instanton-like gluonic fields

First recall that \(<p, A|\gamma^\mu(p, 3) = \frac{1}{q^+} g_\mu A(q^2) \rangle \)

We expect \(g_\mu (0) \rightarrow 0 \) c and expect \(g_\mu (0) \rightarrow \frac{1}{4} \) c.

The anomaly Eq. of \(D_\mu A^\mu \) implies

\[
\frac{1}{q^+} g_\mu A(q^2) \bar{u}(p) \gamma^\mu \gamma_5 v(q) \rightarrow <p, A| \frac{N_c}{8\pi^2} \frac{q^2}{F^2} \frac{e^{i B_0 q^2}}{F_5^2} F_5 \frac{e^{i B_0 q^2}}{F_5^2} + \frac{1}{q^+} \frac{2}{F_5^2} G_5 F_5 \rangle |
\]

The anomaly density is proportional to the instanton minus anti-instanton density \(Q(x) \)

\[
\frac{N_c}{8\pi^2} \frac{q^2}{F^2} \frac{e^{i B_0 q^2}}{F_5^2} F_5 \frac{e^{i B_0 q^2}}{F_5^2} (x) \sim -2Q(x)
\]

So it produces a direct contribution from instantons to nucleon and we can view as defining an effective coupling such as

\[
<\bar{p}, A| Q(x)| p, A > \rightarrow \frac{1}{q^+} (i g_\mu A^\mu (q^2) \bar{u}(p) \gamma_5 \gamma_5 v(q)) \]

\[
\frac{N_c}{8\pi^2} \frac{q^2}{F^2} \frac{e^{i B_0 q^2}}{F_5^2} F_5 \frac{e^{i B_0 q^2}}{F_5^2} (x) \sim -2Q(x)
\]
which is pure helicity flip (need $\lambda_{2} = -\lambda'_{2}$).

$g^{\text{emb}}(0)$ is a universal const. which takes care
of the observed reduction of $g_{A}(0)$ from 0.6
to 0.2 or so.

Now a non-vanishing quark-quark-instanton
process implies the non vanishing same process
with n extra gluons.

Therefore one can also consider here the
existence of non direct contributions with
an effective nucleon-nucleon-n gluons coupling

\[\langle q_{1}, q_{2} | \mathcal{L} | q_{1}, q_{2} \rangle = \lim_{q \to 0} \text{Im} \left[\frac{\mathcal{A}^{\text{emb}}(q^{2})}{q^{2} - i\lambda_{2}} \right] \]

\[= \left[\frac{2}{3} \right] \]

Let's recall that

\[A_{\mu}^{\text{emb}}(x) = \frac{\gamma_{\mu}}{g_{3}} \left(v_{c} \cdot s \right) \]

is the instanton solution in the so-called
singlet gauge

γ_{5} are the 't Hooft symbols, q_{c} color indices,

v_{c} Lorentz indices and k_{c} four momentum of $q_{c}.$

s is the instanton radius we should integrate over
and will take a mean value $s_{0} \approx 0.5 \text{ fm}.$

If we believe that the non-perturbative
Pomeron is essentially a two-gluon state
we can hope from that to construct a $\Phi_{5}.$

They take e as a reference the D-L Pomeron
which leads to
\[\phi_s = \phi_s = \langle \pi^+ \pi^- \pi^0 \rangle = \bar{u}_+(t_1') \gamma^\mu u_-(t_1) \left[\frac{3 \beta}{\Delta(t_1)} F_1(t_1) \right] \bar{u}_+(t_2') \gamma^\mu u_-(t_2) \]

\(\Delta(t) \) is the Pomeron propagator, \(F_1(t) \) the elastic form factor and \(\beta = 1.8 \text{ GeV}^2 \) a phenomenological coupling constant.

In this case \(\phi_s \) reads (Factorization)

\[\phi_s = \langle \pi^+ \pi^- \pi^0 \rangle = \frac{1}{16 \pi^4} \left(\frac{2}{\hat{s}} \right)^2 \langle 4 \pi^+ | k^2 \rangle \frac{3 \beta}{\Delta(t)} F_1(t) \bar{u}_+(t_1') \gamma^\mu u_-(t_1) \]

\[\bar{u}_+(t_2') \gamma^\mu u_-(t_2) \]

\(\bar{u} \) is the Pomeron wave function and \(\langle 4 \pi^+ | k^2 \rangle \) can be taken as the average square momentum of gluons in the Pomeron \(k^2 \) (Gluon virtuality)

If one uses the standard expression for \(P \) with \(\phi_2 = \phi_4 = 0 \) one gets in the limit \(\hat{s} \) small

\[P = \sin \theta_2 \cos \theta_2 G_A^{\langle t \rangle} \left(\frac{1}{3} \frac{M_0 s_0^4 \langle k^2 \rangle}{\beta F_1(t) \hat{s}} \right) + \cdots \]

Since \(F_1(t) \to 1 \) \(t \to 0 \) one gets

\[P = P_0 \sin \theta_2 \] with \(P_0 = \frac{1}{16 \pi^4} \frac{G_A^{\langle t \rangle} (M_0 s_0^4 \langle k^2 \rangle)}{\beta \hat{s}} \)

Numerical Estimate

They take \(G_A^{\langle t \rangle} (0) = 0.5, \langle k^2 \rangle = (0.4 \text{ GeV})^2 \) which (see estimates) corresponds approximately to \(\hat{s} \to 2 \) \((\hat{s}_0 = 9 \text{ GeV}^2) \)

\[\Rightarrow \quad P_0 \approx 0.8 \]

Note: can change these parameters \(\langle k^2 \rangle \to \]

\[\hat{s} \to \] and \(G_A^{\langle t \rangle} \to \]

What does it mean ??
FIG. 11. Mean transverse momentum of the gluons in variant 1 ($|p| = |uud|)$ (broken lines) and in variant 2 ($|p| = |uD|)$ (continuous curves). The symbols $\{8\}$ and $\{10\}$ indicate that the averaging was performed for σ_{int} or $\sigma_{\text{(10)}}$, respectively.

\[\alpha_s = \frac{g^2}{4\pi} \]

FIG. 12. Dependence of α_s in variants 1 and 2 on the diquark radius.

B. G. Zakharov and B. Z. Kopeliovich

Sou. J. Part. Nucl. 22 (1991) 67
FIG. 2. The value of the forward polarization slope P_0 [Eq. (10)] vs s (in GeV2). The crosses indicate data from Ref. [21]; the diamond, data from Ref. [22]; the square, data from Ref. [23]; the dash, data from Ref. [24]; and the star, data from Ref. [25]. The solid line is drawn through the mean value $P_0 = 0.83$.

For pomeron exch. we expect like for photon exch. \(\Phi_2 = \sqrt{t} f_{+2}(s) \) \(\Phi_1 = f_2 - f_{++}(s) \) \(f_{+2}(s) \) and \(f_{++}(s) \) same energy dep.

\[\frac{d \sigma}{d \Omega} = P = \sqrt{-t} \quad \text{not} \quad P \sqrt{-t} \text{ kin} \%
\]

This P_0 corresponds to g exchange such that

\[P_0 = \frac{P}{\sqrt{s}} \text{ kin} \%
\]

P_0 is not the W flip coupling;
HOW LARGE IS THE POMERON-FLIP COUPLING TO THE NUCLEON?

VARIOUS SOURCES OF INFORMATION

1. MODELS RELYING ON HIGH ENERGY $\bar{p}p$ POLARIZATION DATA (Φ_{14} \geq 45 GeV/c)

* IMPACT PICTURE (BSW - 1979)

REMEMBER FOR $|t| < 1$ GeV2, 1% to 2% of A_N COMES FROM CNI

WE FIND THAT FOR 100 GeV/c AND 300 GeV/c

Re ϕ_5 and Im ϕ_5 < 1%

(Recall $\phi_5 = \lambda_5 \sqrt{|\phi_5|} \Im \phi_5$)

PURE CNI WILL NOT BE AFFECTED BY ϕ_5 TO

* ANOTHER SIMPLE EIKONAL MODEL LEADS TO THE SAME CONCLUSION IF USE CORRECT DATA !!

2. MODELS RELYING ON ACCURATE A_N FOR π^+

* B. Kopevovich fits $\Sigma = A_N(\pi^+) + A_N(\pi^-)$

$\Sigma = \sqrt{1-A} \left(\frac{\Im P_{++}}{\Im P_{++}} \right)$ with $A = \Re P_{++} / (\Im P_{++})$

He finds $A = (0.85 \pm 0.05)$

USE LESS ACCURATE DATA AND GET \(\lambda = 0.04 \pm ? \)

3. DYNAMICAL MODELS

A. BORESHOV et al. (Sov. J. Nucl. Phys. 27 (1978) 432)

\[
\begin{align*}
\phi & \rightarrow N \rightarrow \phi^+ + A^+ \\
& \quad + T^+ + \bar{p}
\end{align*}
\]

\(T^0 = 3 F_N + 2 F_A \)

\(T^+ = 2 F_N - \frac{3}{2} F_A \)

FROM Ti\(^{\text{H}}\) DATA GET A RESULT CONSISTENT

WITH THE PREVIOUS ONES

A

CAN EXPECT AN INTERFERENCE COMING FROM THE

ODDeron (\(C = -1, 39 \)) WHICH GENERATES A

REAL PART. FOR \(\phi^+ \)
$P_{lab} = 250\text{GeV/c}$

$\Phi_s^{N = 1} = 0$

$\Phi_s^{Nud} \neq 0$
Fig. 1a: Comparison of two model calculations for the polarization in pp elastic scattering with experiment at $p_{cm}=24$ GeV/c (data from ref. (?)). The solid line is obtained by including a diffractive helicity flip component, the dashed line without that component.

Fig. 1b: Comparison of two model calculations for the polarization in pp elastic scattering with experiment at $p_{cm}=1.0$ GeV/c (data from ref. (?)). The dashed line is obtained by including a diffractive helicity flip component, the dotted line without that component.

H. Gerhold and W. Menotto

Pauli Incuded

\[\text{CERN (1978)} \]

\[\text{CERN - DATA} \]

\[150 \text{ GeV/c} \ (1980) \]

Prediction from
EDUARDO, SOPENA, WU
PR. DM. 3249 (1979)
A scatter plot showing data points and a curve fitting line. The x-axis is labeled with a range from -3 to 3 in (GeV)^2, and the y-axis is labeled Polarization. The plot includes a note indicating data points and a curve from the text "Polarization" at the bottom of the page.
and the important momentum transfers are \(|t| = 1/\ln(s/s_0)|. The spin-flip residue of the pomeron is proportional to \(f_1(b_0)|, so that the spin-flip amplitude does not die away with increasing energy at fixed \(t\).

Thus, the \(N\) and \(\Delta\) contributions to the spin-flip residue of the \(P(P')\) pole cancel to a great extent, whereas in the case of the amplitude with \(l_z = 1\) (the \(\rho\) pole), to which the \(N\) and \(\Delta\) contribute with opposite signs, a

![Image of a diagram showing data and equations.

FIG. 11. a—The \(t\)-dependence of \(\tau_0 = \frac{|T_0^0 \sqrt{s_0 \sqrt{-t}}|}{T_0^0}\); b—the \(t\)-dependence of the phase difference \(\varphi_0^0 - \varphi_{\infty}^0\).

\(s_0 = 1 \text{ GeV}^2\)

From \(P(\pi^\pm p)\) data at 40 GeV/c

Borodkov et al., 436
Attempts to improve the accuracy of the CNI analyzing power

Elliot LEADER
Birbeck College
London WC1E 7HX

My survey of polarimeters was presented to the RIKEN BNL Workshop on Perturbative QCD as a Probe of Hadron Structure and a summary will appear in those proceedings. One of the most promising polarimeters is based on interference between electromagnetic and hadronic amplitudes. Its analyzing power A_N was thought to be exactly calculable, but it turns out that this claim rests upon the assumption that all hadronic helicity-flip amplitudes vanish at high energies and are negligible in the RHIC region. This assumption is probably a good approximate statement, but can not be proved rigorously.

Here I wish to explore to what extent one can learn about these helicity amplitudes from experiments at RHIC.

Surprisingly, it turns out that information useful to both the above can be obtained in principle from a study of the t-dependence of the cross-section asymmetries associated with A_N and A_{NN} at small t, even when the beam polarization is unknown. Alas, however, Nature conspires to make this method of little practical use. Nonetheless, in studying the structure of the contributions to A_N we have succeeded in simplifying its form so that it depends on only one unknown parameter, the imaginary part of the asymptotic part of the ϕ_5 amplitude.

We consider pp collisions in the collider mode at small momentum transfer when the bunch polarizations are arranged so that one can measure the cross-section asymmetries associated with A_N for each beam (one beam unpolarized) and with A_{NN} (both beams polarized).

We assume σ_{TOT} (hadronic) is known reasonably accurately. Let $P_{1,2}$ be the unknown, but non-zero, polarizations of the beams. The transparencies outline the main ideas of this approach and show why the method, in the end, fails to be of practical use.
Surprisingly seems can learn about hadronic helicity-flip via measurements with polar beams, but without knowing value of poles \(P_{1,2} \).

For very small \(t \) (Baltimore, Leeder, Gotsman 1978)

\[
\frac{d\sigma}{dt} \quad \Gamma \rightarrow A_N = a_N + b_N t
\]

\[
\frac{d\sigma}{dt} \quad \pm A_{NN} = a_{NN} + b_{NN} t
\]

Tests \(\Rightarrow \) valid for \(|t| \leq 0.01 \text{GeV}^2 \)

\(\Rightarrow \) no problem experimentally

(\(\approx 40 \) bins of \(\Delta t = 10^{-4} \))

Measured asymmetries are

\[
P_{1,2} \sqrt{-t} A_N \frac{d\sigma}{dt} = P_{1,2} [a_N + b_N t]
\]
\[P_1 P_2 + A_{NN} \frac{d\theta}{dt} = P_1 P_2 [a_{NN} + b_{NN} t] \]

Measured slopes and intercepts of straight lines yields:

\[
\begin{align*}
\frac{a_N}{b_N} &= \left(\frac{P_{12} a_N}{P_{12} b_N} \right)^{\text{Expt}} \\
\frac{a_{NN}}{b_{NN}} &= \left(\frac{P_1 P_2 a_{NN}}{P_1 P_2 b_{NN}} \right)^{\text{Expt}}
\end{align*}
\]

Thus \(P_1, P_2 \) cancel out. Also can use:

\[
\frac{a_N^2}{a_{NN}} = \left(\frac{P_1 a_N}{P_2 a_N} \right) \left(\frac{P_2 a_N}{P_1 a_N} \right)^{\text{Expt}}
\]
Coefficients a_n, b_n, a_{NN}, b_{NN} depend on 2 unknown hadronic amplitudes, $\phi_2 + \phi_5$. Seems to give 3 relations between 4 unknowns. But ---.

i) Study of lower energy data \Rightarrow only $\text{Im} \phi_2, \text{Im} \phi_5$ relevant asymptotically

ii) Theorem (Trueman, Deiets)
\Rightarrow $\text{Im} \phi_2 = 0$ at $t=0$ for dominance of $PC=+1$ exchange

Consequences:
A_{NN} no good: $a_{NN} = 0$
But A_N measurement seems to be able to fix $\text{Im } \phi$s!

$$a_N = \frac{\kappa}{2} - \text{Im } \phi$$

$$b_N = -\frac{\kappa}{2} (\beta_1 + \beta_2 + B/2) + \text{Im } \phi \left(2\beta_1 + b_5 + \frac{\alpha^2}{4m^2} \right)$$

where $\beta_1, 2$ are slopes of e.m. $F_{1,2}(q^2)$

B = slope of $d\sigma/dt$

b_5 = slope of ϕ_5

Know $\beta_1 + \beta_2 + B/2 \approx 13\text{ GeV}^{-2}$

Also $\beta_1 \approx \beta_2$ and expect

$$b_5 \approx \frac{B}{2}$$

$$\therefore \left(2\beta_1 + b_5 + \frac{\kappa^2}{4m^2} \right) \approx \left(\beta_1 + \beta_2 + \frac{B}{2} + \frac{\alpha^2}{4m^2} \right)$$
\[J_\xi = \text{anomalous mag. mom} \]

\[\frac{a^2}{4m^2} \approx 1 \]

\[\therefore \text{difference between } (2\beta_1 b_\xi + \frac{a^4}{4m^2}) \]

and \((\beta_1 b_\xi + \frac{B}{2}) \) is small; also not accurately known.

Hence

\[b_n \approx (\beta_1 b_\xi + \frac{B}{2}) [- \frac{a^4}{2} + \text{Im} \tau_5] \]

and \(\text{Im} \tau_5 \) disappear in the

\[\frac{a_n}{b_n} \]

ratio. So method fails!
Positive side: We have much better idea of structure of A_n in CNI region at RHIC energies.
DISPERSION RELATION APPROACH TO SPIN FLIP

N.H. BUTTIMORE
University of Dublin
Hamilton Building
Dublin 2, Ireland

1. The asymmetry A_N for elastic pp scattering in the Coulomb-Nuclear interference region at high energies may be expanded in powers of t according to

$$
\frac{m}{\sqrt{-t}} A_N = \frac{(2 \text{Im} r_5 - \kappa_p) t_c/t + 2 \rho \text{Im} r_5 - 2 \text{Re} r_5}{1 + (t_c/t + \rho)^2}
$$

where $t_c = 8 \alpha \pi / \sigma_{\text{tot}}$ corresponds to interference,

$$
r_5 = \frac{m}{\sqrt{-t}} \frac{2 \phi_5}{\text{Im}(\phi_1 + \phi_3)},
$$

$$
\rho = \frac{\text{Re}(\phi_1 + \phi_3)}{\text{Im}(\phi_1 + \phi_3)}
$$

$$
\kappa_p = \mu_p - 1 = 1.793.
$$

An expression for somewhat larger values of $-t$ is given in equation (4) of PR 51, 3944 (1995). The amplitude ϕ_2 has been ignored here but will be included in item 3. The maximum A_N in the interference region is controlled by $\kappa_p - 2 \text{Im} r_5$.

2. A fit to the E704 data indicates that the hadronic helicity flip non-flip ratio

a) $\text{Im} r_5 = 15\% \pm 31\%$

$\text{Re} r_5 = -2.5\% \pm 3.9\%$

in the case where data in the interference region only is used.

b) $\text{Im} r_5 = 8\% \pm 14\%$

$\text{Re} r_5 = -1.0\% \pm 0.4\%$

in the case where the data in both the interference region and extending to $-t = 0.6(\text{GeV/c})^2$ at laboratory momenta 150 to 300 (GeV/c) are employed.

We conclude that the real part of r_5 is sensitive to the larger $-t$ asymmetries A_N, as expected from the above expression where $\rho \text{Im} r_5$ is more prominent at larger $-t$ values, ρ being small at the energies considered.

3. The hadronic double helicity flip amplitude $\phi_2 = (+ + |\phi| - -)$ does not necessarily vanish at $t = 0$ and, if not negligible, would appear in the numerator of the expression for $(m/\sqrt{-t}) A_N$ in the form

$$
[2 \text{Im} r_5 - \kappa_p (1 + \frac{1}{2} \text{Im} r_2)] t_c/t + (2\rho + \text{Re} r_5) \text{Im} r_5 - (2 + \text{Im} r_2) \text{Re} r_5
$$

35
The maximum of the asymmetry in the CNI region is now proportional to

\[\kappa_p (1 + \frac{1}{2} \text{Im} r_2) - 2 \text{Im} r_5 \]

so that either \(I = \text{Im} r_5 \) or \(-\xi = \text{Im} r_2 = \Delta \sigma_T/\sigma_{\text{tot}}\), or both, may alter the maximum. Here \(\Delta \sigma_T \) refers to the difference between transversely polarized total cross sections.

4. Suppose that a maximum of the asymmetry in the CNI region is known experimentally. \(\text{Im} r_5 \) and \(\text{Im} r_2 \) contribute as we have seen. The rôle of \(\rho \) and the Bethe phase \(\delta \) is non-negligible in this maximum. To first order, the contributions of such quantities is given in the table. Positive values of \(\text{Im} r_5 \) and \(\Delta \sigma_T/\sigma_{\text{tot}} = 2\xi \) decrease the maximum.
RIKEN BNL RESEARCH CENTER

Hadron Helicity-Flip at RHIC Energies

Dispersion relation approach to spin flip

N. H. Buttimore

1:30 pm July 28, 1997 Room 2-34 in 510

SUMMARY

1. Asymmetry A_N and Q_2
2. Role of $\Im \phi_5$ and $\Re \phi_5$ in A_N
3. Analyticity and helicity-flip
4. Bounds on hadronic spin flip
5. Conclusions
(2) For $s \geq 50\text{ GeV}^2$, A_N changes sign around $|t| \approx 0.3$ to 0.4 (GeV/c)^2 from positive to negative and reaches a negative minimum followed by a sharp zero crossing in the region where the diffractive dip in the differential cross section develops around $|t| \approx 1.2\text{ (GeV/c)}^2$ and possibly remains positive at larger $|t|$ values.

These features have stimulated a number of speculations on the existence of a hadronic helicity single-flip contribution, ϕ_5^h, that does not necessarily decrease as $s^{-1/2}$.

Recent elastic pp scattering results at very small angles from Fermilab help to advance our understanding of the hadronic single-flip helicity amplitude. By using the polarized proton beam at Fermilab and scattering on a recoil-sensitive scintillator target, it was possible for the first time to measure the analyzing power of pp scattering at very small $|t|$ values $[1.5 \times 10^{-3} \leq |t| \leq 5.0 \times 10^{-2}\text{ (GeV/c)}^2]$ around 200 GeV/c [13]. This momentum transfer range was not accessible in other experiments that used unpolarized beams and polarized targets at comparably high energies. The data set around 200 GeV/c that we are considering in this study spans $1.5 \times 10^{-3} \leq |t| \leq 0.6\text{ (GeV/c)}^2$. Over this region, the asymmetry can be expressed as

$$A_N = \frac{\sqrt{-t}}{m} \frac{(\mu - 1)z - 2zI + 2(\rho I - R)(1 + t/T)}{1 + (\rho - z)^2 - \frac{I}{2m^2}\{(\mu - 1)z - 2R)^2 + 4I^2\}}$$

where $z = t_e / (-t)$, $t_e = \frac{8\pi \alpha}{\sigma_{\text{tot}}}$ and $T = 9m \nu_f$, $R = \text{Re} \nu_f$.

![FIG. 1. The three curves represent the fits to the pp asymmetry data in the $1.5 \times 10^{-3} \leq |t| \leq 0.6\text{ (GeV/c)}^2$ range we have considered (see Table I). The solid line corresponds to 1, dashed to 2, and dotted to 3.](image-url)
TABLE I. Results of the evaluation of the single-flip helicity amplitude for pp
$\sigma_{\text{tot}} = 39$ mb and when an error equals zero it implies that the variable is fixed to a

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>I</th>
<th>τ</th>
<th>ρ</th>
<th>P_L range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(GeV/c)²</td>
<td></td>
<td>(GeV/c)</td>
</tr>
<tr>
<td>1</td>
<td>-0.044 ± 0.013</td>
<td>0.295 ± 0.207</td>
<td>0.440 ± 0.018</td>
<td>-0.02</td>
<td>$150-205$</td>
</tr>
<tr>
<td>2</td>
<td>-0.010 ± 0.004</td>
<td>0.082 ± 0.138</td>
<td>0.285 ± 0.036</td>
<td>-0.02</td>
<td>$150-300$</td>
</tr>
<tr>
<td>3</td>
<td>-0.037 ± 0.022</td>
<td>0.078 ± 0.182</td>
<td>0.389 ± 0.017</td>
<td>-0.10</td>
<td>$45-205$</td>
</tr>
<tr>
<td>4</td>
<td>-0.025 ± 0.039</td>
<td>0.145 ± 0.311</td>
<td>0.450 ± 0.000</td>
<td>-0.02</td>
<td>$185-200$</td>
</tr>
<tr>
<td>5</td>
<td>-0.041 ± 0.002</td>
<td>0.000 ± 0.000</td>
<td>0.440 ± 0.009</td>
<td>-0.10</td>
<td>$45-205$</td>
</tr>
<tr>
<td></td>
<td>-0.097 ± 0.002</td>
<td>0.500 ± 0.000</td>
<td>0.433 ± 0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.161 ± 0.003</td>
<td>1.000 ± 0.000</td>
<td>0.424 ± 0.012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Im ϕ_2 and Im ϕ_5 in low-t maximum of A_N

$$\frac{m}{\sqrt{t}} \frac{\text{Im } \phi_5}{\text{Im } \phi_+} = I, \quad -\frac{\text{Im } \phi_2}{\text{Im } (\phi_1 + \phi_3)} = \zeta.$$
\[\gamma = \frac{\frac{m}{\sqrt{-t}} \cdot \phi_y}{\sqrt{-t} \cdot \text{Im} \phi_y} \]

\[\gamma = 0.896 \]

\[\xi = \frac{\Delta \sigma_t}{2 \sigma_{tot}} \]

<table>
<thead>
<tr>
<th>Parameter Value</th>
<th>Percent(%)</th>
<th>Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>100.00</td>
<td>4.60</td>
</tr>
<tr>
<td>+((\sqrt{3}/2) \delta)</td>
<td>0.025</td>
<td>2.17</td>
</tr>
<tr>
<td>+((\sqrt{3}/2) \rho)</td>
<td>0.10</td>
<td>8.66</td>
</tr>
<tr>
<td>-(1/(\nu)) I</td>
<td>0.08</td>
<td>-8.93</td>
</tr>
<tr>
<td>+((\sqrt{3}/2\nu)) I (\rho)</td>
<td>0.01</td>
<td>0.97</td>
</tr>
<tr>
<td>-((\sqrt{3}/\nu)) (\rho)</td>
<td>-0.03</td>
<td>5.80</td>
</tr>
<tr>
<td>+((\sqrt{3}/\nu)) (w_m)</td>
<td>0.001</td>
<td>0.19</td>
</tr>
<tr>
<td>-((\sqrt{3}/\nu)) (w_c)</td>
<td>0.0025</td>
<td>-0.22</td>
</tr>
<tr>
<td>-(3/4) (\rho^2)</td>
<td>0.10</td>
<td>-0.75</td>
</tr>
<tr>
<td>-(3/4) (\beta^2)</td>
<td>0.02</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Though a \(\rho\) value of 0.1 contributes at a level of 8.7\% it is a correction that may reliably be made. A positive value of \(\rho\) enhances the asymmetry maximum in \(pp\) elastic scattering.

\(A_N\) and the differential cross section should be fit to the respective data near the forward direction to determine \(\beta\), \(R\), and \(\xi\), respecting the constraint

\[\beta^2 = \left(\frac{\Delta \sigma_t}{2 \sigma_{tot}} \right)^2 (1 + \rho^2) + \frac{1}{2} \left(\frac{\Delta \sigma_t}{4 \sigma_{tot}} \right)^2 (1 + \rho_2^2) \]

41
For NN → NN D. V. Bugg, Nucl. Phys. B5, 29 (1968) writes a dispersion relation for

\[\lambda = \frac{\phi_s}{\rho \sin \Theta} = -\frac{m}{\sqrt{s}} \left(\alpha + \beta + \frac{2 \gamma}{\rho \sin \Theta} \right), \]

\(\alpha, \beta, \gamma, \delta, \varepsilon\) being Goldberger, Nambu, Oehme amplitudes. In terms of \(s\) and \(u\)

\[\text{Re} \lambda(s) - \sum_i \frac{\Gamma_i}{u - u_i} - \frac{i}{\pi} \int_0^\infty \frac{\text{Im} \lambda(s') ds'}{s'-s} - \frac{i}{\pi} \int_0^\infty \frac{9m^2(s') ds'}{u' - u} \]

= same expression with \(s\) replaced by \(4\mu^2\).

Here \(t = 0\), so that \(u = 4\mu^2 - s\). A subtraction at threshold \(s = 4\mu^2\) ensures convergence of \(\lambda\).

The unphysical cut from \(u = 4\mu^2\) to \(u = 4\mu^2\)

has been approximated by a number of poles with coupling constants proportional to \(\Gamma_i\).
Fig. 1. The non-s-wave parts of $\text{Im } \epsilon_{pp}$ and $\text{Im } \beta_{pp}$. The continuous curve is a fit (by eye) to the former, and the dashed curve is a fit to the latter; these curves have been used in computing dispersion integrals.

Fig. 2. The non-s-wave parts of (a) $\text{Im } \epsilon_{pn}$ and (b) $\text{Im } \beta_{pn}$. The continuous curves are the empirical fits which have been used in computing dispersion integrals. The experimental points shown by broken lines are considered to be less reliable than the rest for reasons given in the text.

Fig. 3. (a) $\text{Im } (ic/\sin \theta)_{pp}$, (b) $\text{Im } (ic/\sin \theta)_{pn}$. The dashed curves are the empirical fits which have been used in computing dispersion integrals.
Polarimetry at high energies with pp elastic scattering

Boris KOPELIOVICH

Heidelberg/Dubna
Polarimetry at high energies
with pp elastic scattering

Boris Kopeliovich
(Heidelberg/Dubna)
RIKEN-BNL Center
Aug. 1997

The analyzing power A_n of pp elastic scattering is known to vanish at high energies. This is because the spin-flip amplitude decreases with energy. There are, however, two regions (at least!) of momentum transfer, where A_n is nearly energy-independent and relatively large.

1. $|t| \sim (10^{-3} - 10^{-2}) \text{ GeV}^2$ Coulomb-Nuclear Interference (CNI)

 The energy-independent electromagnetic spin-flip amplitude interferes with the hadronic non-flip amplitude.

2. $|t| \sim (1 - 1.5) \text{ GeV}^2$ In this region the imaginary part of the hadronic spin-flip amplitude changes sign leading to the dip observed in the differential cross section. In the vicinity of the dip the hadronic spin non-flip amplitude is as small as the spin-flip one (at any energy!) providing a maximal polarization.
(1) **CNI polarimeter**

\[A_N(t) = A_N(t_p) \frac{1}{3y^{3/2}} \]

\[y = \frac{1}{4} V t_p ; \quad t_p = \frac{81 \pi \alpha}{\beta_{pp}} \]

\[A_N(t_p) = \frac{1}{\beta} \frac{\sqrt{E_p}}{m_p} (\mu_p - 1) \text{ Energy-independent reliably predicted} \]

Uncertainty due to the hadronic spin-flip

\[f_h(t) = f_0(t)(1 + r \frac{\sqrt{E_n}}{m_p} G_{nn}) \]

\[A_N(t) = A_N(t) \left|_{r=0} \right. \left(1 - \frac{2r}{\mu_p - 1}\right) \]

\[\text{hadronic spin-flip correction} \]

One cannot use CNI as a polarimeter without any knowledge of \(r \)!

To what extend can we reduce the uncertainty of the CNI polarimetry using available information about \(r \)?
Experimental information

- Polarization in elastic π^+p scattering is due to interference of the Pomeron Δ non-flip amplitude with Reggeon $(P+f)$ spin-flip, and vice versa.

The dominant P spin-flip term cancels in the sum

$$ A_{\pi^+p}^N(t) + A_{\pi^-p}^N(t) = (r_p + r_f) \frac{4 \text{ctg} \left(\frac{\pi \alpha'}{2} \right) R(s)}{(1 + R(s))^2} \quad (*) $$

$$ R(s) = R(s/s_0)^{\alpha_p - \alpha_f} $$

$$ \alpha_p = 1.1 + 0.25 t $$

$$ \alpha_f = 0.5 + 0.9 t $$

$$ r_f, P = (f-/f+/f++)_s, P $$

Fit to π^+p:

Fit with (*) to the data on A_N^π at energies $6 \div 14$ GeV results in

$$ r_p + r_f = 0.059 \pm 0.008 $$

In the model of f-dominance for the Pomeron

$$ r_p = r_f \Rightarrow r_p = 0.03, \text{ otherwise, this result can be used as an upper limit for } r_p \leq 0.06 $$

(potentially that r_p and r_f have the same sign)

It is very improbable that r_p can increase more than by factor of 2 in the RHIC energy range.
• CNI in \(pp \) elastic scattering
 The E704 data, although with low statistics, put limits on a possible value of \(r \), i.e. restrict the uncertainty of the CNI polarimetry.
 If \(r \) is imaginary, \(\text{Im} r \leq 0.15 \)
 For an arbitrary phase of \(r \), \(\text{Im} r \leq 0.3 \)

This ends up, respectively, with 15\% or 30\% error in the beam polarization measurement.

• CNI in \(pA \) elastic scattering
 If \(r = 0 \), the CNI formulas look the same as for \(pp \), except the replacement
 \[
t_p^{pA} = t_p^{pp} \left(Z \frac{\sigma_{tot}^{pp}}{\sigma_{tot}^{pA}} \right), \text{ but } A_N^{pA}(t) \text{ changes sign at } |t| \sim 3/R^2
 \]
 For \(pC \) interaction
 \[
t_p^{pC} = 2.5 \times 10^{-3} \text{ GeV}^{-2}
 \]
 and in the maximum
 \[
 A_N^{pC} (t_p) = 0.039
 \]
If, however, \(r \neq 0 \) one should calculate \(r^{PA} \), which may be different from \(r^{pp} \).

![Amazingly, \(r^{PA}(t) = r^{pp}(t) \), B.K. in Glauber approach, and even including the Gribov's inelastic shadowing corrections. Using the most precise E704 result for \(A^{PC}_{\mu} = 0.024 \pm 0.09 \) we arrive at an estimate \(r = 0.22 \pm 0.26 \).

\[
\begin{align*}
A^{PC}_{\mu} &= 0.024 \pm 0.09 \\
\text{r} &= 0.0 \pm 0.15 \\
&\quad \text{or} \\
&= 0.0 \pm 0.3 \\
&= 0.22 \pm 0.26
\end{align*}
\]

Theoretical expectations

- Perturbative QCD

The quark-gluon vertex conserves helicity. Therefore it is natural to expect \(r \ll 1 \) (naively, \(r = 0 \)). However, the proton helicity is the sum of the quark helicities, since they have transverse motion.
Evaluation in the double-gluon (Born) approximation

If the proton is a symmetric 3q-configuration, \(r = 0 \).

If, however, the dominant configuration contains a compact diquark with radius \(R_D \), then \(r \neq 0 \).

Expectation \(r \approx 0.1 \)

\[
\begin{array}{c}
\text{B.K. \\ \\ \\ B. Zakharov} \\
1989
\end{array}
\]

- Pion-exchange model for the Pomeron vertex

One can switch from the quark-gluon representation to the hadronic basis

\[
\begin{array}{c}
P = \pi^+ P = \pi^- P = \pi^0 P \approx P \frac{N}{\pi} P + P \frac{\Delta}{\pi} P
\end{array}
\]

Due to strong cancelation between \(N \) and \(\Delta \) the Pomeron spin-flip is very small

\(r = 0.06 \)
Conclusion: there is a nice consensus between available experimental data and theoretical predictions for the hadronic spin-flip at high energies $r \lesssim 0.1$.

This implies that CN1 polarimeter has accuracy of about 10% even without calibration (i.e. measurement of r).

2) Polarimetry with pp elastic scattering at $t = 1 - 1.5$ GeV2

Data for $A_N(t)$ in this region are available up to $E_{Lab} = 300$ GeV in this workshop. One can measure the left-right asymmetry on a fixed target at RHIC and use these data to evaluate roughly the beam polarization.

One can do, however, a much better job calibrating the polarimeter, making use of the relation

$$A_N(t) \equiv P_0(t)$$
The recoil proton in the fixed-target experiment has kinetic energy

$$E_{\text{kin}} = -\frac{t}{2m_p},$$

what is only $500\div600$ MeV at this energy the analyzing power is known to be large, a few tens percent, and one can easily measure the recoil proton polarization $P_0(t)$. This is quite a standard measurement usually performed with a carbon polarimeter, which can be precisely calibrated at a low-energy machine, i.e., at IUCF. The measurement of $P_0(t)$ can be done either at RHIC with unpolarized beam, or at other accelerators (CERN, FNAL).

The suggested polarimeter provides an absolute normalization of $A_{\Delta}(t)$ and contains no uncertainty, which was not under control. The target may be either a proton jet, or a carbon foil. The counting rate is expected to be high, about 10^3 per minute. The uncertainty of the CNI W. Guryn polarimeter can be fixed, and one gets two polarimeters for self-control.
RIKEN BNL Center Symposium/Workshops

Title: Nonequilibrium Many-body Dynamics
Organizers: Miklos Gyulassy and Michael Creutz
Dates: September 22-25, 1997

Title: Physics with Parallel Processors
Organizers: TBD
Dates: January, 1998 (tentative)

For information please contact:

Ms. Pamela Esposito
RIKEN BNL Research Center
Building 510A, Brookhaven National Laboratory
Upton, NY 11973, USA
Phone: (516)344-3097 Fax: (516)344-4067
E-Mail: rikenbnl@bnl.gov
Homepage: http://penguin.phy.bnl.gov/www/riken.html