Probability analysis of MCO over-pressurization during staging

PDF Version Also Available for Download.

Description

The purpose of this calculation is to determine the probability of Multi-Canister Overpacks (MCOs) over-pressurizing during staging at the Canister Storage Building (CSB). Pressurization of an MCO during staging is dependent upon changes to the MCO gas temperature and the build-up of reaction products during the staging period. These effects are predominantly limited by the amount of water that remains in the MCO following cold vacuum drying that is available for reaction during staging conditions. Because of the potential for increased pressure within an MCO, provisions for a filtered pressure relief valve and rupture disk have been incorporated into the ... continued below

Physical Description

37 p.

Creation Information

Pajunen, A.L. June 5, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsors

Publisher

  • Fluor Daniel Hanford, Inc.
    Publisher Info: Fluor Daniel Hanford, Inc., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this calculation is to determine the probability of Multi-Canister Overpacks (MCOs) over-pressurizing during staging at the Canister Storage Building (CSB). Pressurization of an MCO during staging is dependent upon changes to the MCO gas temperature and the build-up of reaction products during the staging period. These effects are predominantly limited by the amount of water that remains in the MCO following cold vacuum drying that is available for reaction during staging conditions. Because of the potential for increased pressure within an MCO, provisions for a filtered pressure relief valve and rupture disk have been incorporated into the MCO design. This calculation provides an estimate of the frequency that an MCO will contain enough water to pressurize beyond the limits of these design features. The results of this calculation will be used in support of further safety analyses and operational planning efforts. Under the bounding steady state CSB condition assumed for this analysis, an MCO must contain less than 1.6 kg (3.7 lbm) of water available for reaction to preclude actuation of the pressure relief valve at 100 psid. To preclude actuation of the MCO rupture disk at 150 psid, an MCO must contain less than 2.5 kg (5.5 lbm) of water available for reaction. These limits are based on the assumption that hydrogen generated by uranium-water reactions is the sole source of gas produced within the MCO and that hydrates in fuel particulate are the primary source of water available for reactions during staging conditions. The results of this analysis conclude that the probability of the hydrate water content of an MCO exceeding 1.6 kg is 0.08 and the probability that it will exceed 2.5 kg is 0.01. This implies that approximately 32 of 400 staged MCOs may experience pressurization to the point where the pressure relief valve actuates. In the event that an MCO pressure relief valve fails to open, the probability is 1 in 100 that the MCO would experience pressurization to the point where the rupture disk would actuate. Sensitivity analysis shows that the water content of fuel particulate is the most influential factor to these calculations. The results of continued study and analysis of the fuel particulate water content should be considered for future refinement of this analysis.

Physical Description

37 p.

Notes

INIS; OSTI as DE99050012

Source

  • Other Information: PBD: 5 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99050012
  • Report No.: HNF-SD-SNF-CN--014
  • Grant Number: AC06-96RL13200
  • DOI: 10.2172/325369 | External Link
  • Office of Scientific & Technical Information Report Number: 325369
  • Archival Resource Key: ark:/67531/metadc689095

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 5, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 4:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pajunen, A.L. Probability analysis of MCO over-pressurization during staging, report, June 5, 1997; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc689095/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.