Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

PDF Version Also Available for Download.

Description

This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power ... continued below

Physical Description

8 p.

Creation Information

Doctor, R.D.; Molburg, J.C. & Thimmapuram, P.R. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

Physical Description

8 p.

Notes

OSTI as DE97001971

Source

  • 3. international conference on carbon dioxide removal, Cambridge, MA (United States), 9-11 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97001971
  • Report No.: ANL/ES/CP--91796
  • Report No.: CONF-9609102--4
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/373835 | External Link
  • Office of Scientific & Technical Information Report Number: 436519
  • Archival Resource Key: ark:/67531/metadc689075

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 16, 2015, 1:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Doctor, R.D.; Molburg, J.C. & Thimmapuram, P.R. Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal, article, December 31, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc689075/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.