ENGINEERING CHANGE NOTICE

ECN Category
- Supplemental
- Direct Revision [X]
- Change ECN
- Temporary
- Standby
- Supersede
- Cancel/ Void

ECN Details
- **ECN** 630806
- **Originator's Name, Organization, MSIN, and Telephone No.** Chris Haas, Acceptance, Compliance, and Environmental Services, T3-05, 372-0510
- **USG Required?** [X] No
- **Date** September 5, 1996
- **Project Title/No./Work Order No.** Low-Level Burial Grounds Waste Analysis Plan
- **Bldg./Sys./Fac. No.** WHC-SD-EN-WAP-002, Rev. 0
- **Approval Designator** E
- **Document Numbers Changed by this ECN** WHC-SD-EN-WAP-002, Rev. 0
- **Related ECN No(s).** N/A
- **Related PO No.** N/A
- **Modification Work** [X] No (NA Blks. 11b, 11c, 11d)
- **Work Package No.** N/A
- **Modification Work Complete** N/A
- **Restored to Original Condition (Temp. or Standby ECN only)** N/A

Description of Change
- Change document WHC-SD-EN-WAP-002, Rev. 0 to Rev. 1 (attached).

Justification
- [X] Facility Deactivation
- [] Design Improvement
- [] Criteria Change
- [] As-Found
- [] Environmental
- [] Const. Error/Omission
- [] Design Error/Omission
- [] Facilitate Const

Distribution
- See distribution sheet attached. (EDT-619278)
Engineering Change Notice

16. Cost Impact

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional</td>
<td>Additional</td>
</tr>
<tr>
<td>$ N/A</td>
<td>$ N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Savings</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

17. Schedule Impact (days)

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ N/A</td>
<td>$ N/A</td>
</tr>
</tbody>
</table>

18. Change Impact Review

Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.

<table>
<thead>
<tr>
<th>SDD/DD</th>
<th>Seismic/Stress Analysis</th>
<th>Health Physics Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional Design Criteria</th>
<th>Stress/Design Report</th>
<th>Interface Control Drawing</th>
<th>Calibration Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Specification</th>
<th>Installation Procedure</th>
<th>Component Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criticality Specification</th>
<th>Maintenance Procedure</th>
<th>ASME Coded Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptual Design Report</th>
<th>Operating Instruction</th>
<th>Human Factor Consideration</th>
<th>Computer Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Const. Spec.</th>
<th>Electric Circuit Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procurement Spec.</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vendor Information</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OM Manual</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FSAR/SAR</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety Equipment List</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiation Work Permit</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Impact Statement</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Report</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Permit</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank Calibration Manual</th>
<th>Test Procedures/Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

19. Other Affected Documents

NOTE: Documents listed below will not be revised by this ECN. Signatures below indicate that the signing organization has been notified of other affected documents listed below.

<table>
<thead>
<tr>
<th>Document Number/Revision</th>
<th>Document Number/Revision</th>
<th>Document Number/Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Document Number/Revision</td>
<td>Document Number/Revision</td>
</tr>
</tbody>
</table>

20. Approvals

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

ARCHITECT-ENGINEER

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF ENERGY

<table>
<thead>
<tr>
<th>Signature or a Control Number that tracks the Approval Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL

| [] | | [] | |

[Signature]

A-7900-013-3 (11/94) GEF096
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SD-EN-WAP-002</td>
<td>N/A</td>
<td>1</td>
<td>Low-Level Burial Grounds Waste Analysis Plan</td>
</tr>
</tbody>
</table>

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>Approval Designator</th>
<th>Reason for Transmittal</th>
<th>Disposition (F) & (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, S, Q, D or N/A</td>
<td>1. Approval</td>
<td>1. Approved</td>
</tr>
<tr>
<td></td>
<td>2. Release</td>
<td>2. Approved w/comment</td>
</tr>
<tr>
<td></td>
<td>3. Information</td>
<td>3. Disapproved w/comment</td>
</tr>
</tbody>
</table>

SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
<tr>
<td>1</td>
<td>D. A. Pratt</td>
<td></td>
<td>94/96</td>
<td>T4-03</td>
</tr>
</tbody>
</table>

AUTHORIZED REPRESENTATIVE FOR RECEIVING ORGANIZATION

<table>
<thead>
<tr>
<th>Signature of EDT Originator</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/5/96</td>
</tr>
</tbody>
</table>

COGNIZANT MANAGER

<table>
<thead>
<tr>
<th>Cognizant Manager</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/5/96</td>
</tr>
</tbody>
</table>

DOE APPROVAL

- Approved
- Approved w/comments
- Disapproved w/comments
Waste Analysis Plan for the Low-Level Burial Grounds

Chris R. Haas
Westinghouse Hanford Company, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-87RL10930

EDT/ECN: 619278/630806 UC: 2000
Org Code: 87600 Charge Code: A6W19
B&R Code: EW3130020 Total Pages: 86

Key Words: Low-Level Burial Grounds, mixed waste, low-level waste, waste acceptance, waste designation, waste characterization, QA/QC, sampling and analysis, certification program summaries.

Abstract: This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: WHC/BCS Document Control Services, P.O. Box 1970, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.
RECORD OF REVISION

Title
Low-Level Burial Grounds Waste Analysis Plan, WHC-SD-EN-WAP-002, Rev. 1

CHANGE CONTROL RECORD

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EDT - 161194, 2-13-96</td>
<td></td>
</tr>
<tr>
<td>1 RS</td>
<td>Incorporated changes per ECN# 630806</td>
<td>DA Pratt, DB Powell</td>
</tr>
</tbody>
</table>

A-7320-005 (08/91) WEF168
This page intentionally left blank.
WHC-SD-EN-WAP-002, Rev. 1

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY</td>
<td>vii</td>
</tr>
<tr>
<td>METRIC CONVERSION CHART</td>
<td>viii</td>
</tr>
<tr>
<td>1.0 FACILITY DESCRIPTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 LOW-LEVEL BURIAL GROUNDS DESCRIPTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.1 218-E-10 Burial Ground</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.2 218-W-12B Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.3 218-W-3A Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.4 218-W-3AE Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.5 218-W-4B Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.6 218-W-4C Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.7 218-W-5 Burial Ground</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.8 218-W-6 Burial Ground</td>
<td>1-3</td>
</tr>
<tr>
<td>1.1.9 Leachate Storage Tanks</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF THE LOW-LEVEL BURIAL GROUNDS PROCESS AND ACTIVITIES</td>
<td>1-3</td>
</tr>
<tr>
<td>2.0 WASTE ACCEPTANCE PROGRAM</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 WASTE CERTIFICATION PROGRAM</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1.1 Waste Certification Information</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1.2 Waste Characterization</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1.3 Process Knowledge</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1.4 Sampling and Analysis</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1.5 Analytical Methodologies</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2 PRE-SHIPMENT REVIEW</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.1 Pre-Shipment Review Process</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2 Methodology to Ensure Compliance with Land Disposal Restrictions</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3 WASTE VERIFICATION</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4 CORRECTIVE ACTIONS</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.1 Manifest Discrepancies</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.2 Nonconformances</td>
<td>2-8</td>
</tr>
<tr>
<td>2.4.3 Resolution of Nonconformances</td>
<td>2-8</td>
</tr>
<tr>
<td>2.4.4 Corrective Actions to Meet Land Disposal Restrictions</td>
<td>2-9</td>
</tr>
<tr>
<td>2.4.5 Periodic Evaluation of Nonconformances</td>
<td>2-11</td>
</tr>
<tr>
<td>2.5 ACCEPTING THE WASTE</td>
<td>2-11</td>
</tr>
<tr>
<td>2.6 MANIFEST SYSTEM</td>
<td>2-12</td>
</tr>
<tr>
<td>2.7 TRACKING SYSTEM</td>
<td>2-13</td>
</tr>
<tr>
<td>2.8 ADDITIONAL REQUIREMENTS FOR WASTE GENERATED OFFSITE</td>
<td>2-13</td>
</tr>
<tr>
<td>2.9 METHODOLOGY FOR IGNITABLE, REACTIVE, OR INCOMPATIBLE WASTE</td>
<td>2-13</td>
</tr>
<tr>
<td>3.0 SAMPLING METHODOLOGY</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 SAMPLING METHODOLOGY</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 SAMPLING STRATEGIES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2.1 Container Sampling</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2.2 Point of Generation Sampling (Bulk Loads)</td>
<td>3-2</td>
</tr>
</tbody>
</table>
CONTENTS (cont)

3.2.3 Collected Leachate Sampling 3-2
3.3 LAND DISPOSAL RESTRICTED WASTE SAMPLING 3-2

4.0 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM 4-1
4.1 OBJECTIVES OF THE WASTE ANALYSIS PROGRAM 4-1
4.2 DATA QUALITY OBJECTIVES 4-1
4.3 FIELD QUALITY ASSURANCE AND QUALITY CONTROL 4-1
4.4 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL 4-1

5.0 SPECIAL REQUIREMENTS FOR LAND DISPOSAL RESTRICTION WASTE . 5-1

6.0 RECORDKEEPING .. 6-1

7.0 REFERENCES .. 7-1

APPENDICES

A ANALYTICAL PROCEDURES AND RATIONALE APP A-i

B TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE
ACCEPTANCE ... APP B-i

C FINGERPRINT PARAMETER SELECTION APP C-i

FIGURES

1-1. Locations of Low-Level Burial Grounds in the 200 East Area F1-1
1-2. Locations of Low-Level Burial Grounds in the 200 West Area F1-2
1-3. 218-E-10 Burial Ground .. F1-3
1-4. 218-E-12B Burial Ground .. F1-4
1-5. 218-W-3A Burial Ground .. F1-5
1-6. 218-W-3AE Burial Ground .. F1-6
1-7. 218-W-4B Burial Ground .. F1-7
1-8. 218-W-4C Burial Ground .. F1-8
1-9. 218-W-5 Burial Ground .. F1-9
1-10. Typical Resource Conservation and Recovery Act-Compliant
 Liner System .. F1-10
1-11. 218-W-6 Burial Ground .. F1-11
1-12. Typical Leachate Storage Tank for Trenches 31 and 34 F1-12
TABLES

4-1. Low-Level Burial Ground Sampling Methods T3-1
4-1. Low-Level Burial Ground Data Quality Objectives for Waste Analysis Program T4-1
This page intentionally left blank.
GLOSSARY

ACRONYMS

ALARA as low as reasonably achievable
ASTM American Society for Testing and Materials
COLIWASA composite liquid waste sampler
CFR Code of Federal Regulations
DD direct disposal
DOE-RL U.S. Department of Energy, Richland Operations Office
DQO data quality objective
Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency
FR Federal Register
HOC halogenated organic compound
IH industrial hygienist
LDR land disposal restriction
LLBG Low-Level Burial Grounds
mrem millirem (roentgen equivalent man)
MSDS material safety data sheet
MW mixed waste
OVA organic vapor analyzer
PCB polychlorinated biphenyl
pH negative concentration logarithm of the hydrogen-ion concentration
QA/QC quality assurance and quality control
RCRA Resource Conservation and Recovery Act of 1976
TCLP toxicity characteristics leaching procedure
TOX total organic halides
VOC volatile organic compound
WAC Washington Administrative Code
°C degrees Celsius
°F degrees Fahrenheit
The following conversion chart is provided to the reader as a tool to aid in conversion.

<table>
<thead>
<tr>
<th>Into metric units</th>
<th>Out of metric units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>inches</td>
<td>25.40</td>
</tr>
<tr>
<td>inches</td>
<td>2.54</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
</tr>
<tr>
<td>yards</td>
<td>0.914</td>
</tr>
<tr>
<td>miles</td>
<td>1.609</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>square inches</td>
<td>6.4516</td>
</tr>
<tr>
<td>square feet</td>
<td>0.092</td>
</tr>
<tr>
<td>square yards</td>
<td>0.836</td>
</tr>
<tr>
<td>square miles</td>
<td>2.59</td>
</tr>
<tr>
<td>acres</td>
<td>0.404</td>
</tr>
<tr>
<td>Mass (weight)</td>
<td></td>
</tr>
<tr>
<td>ounces</td>
<td>28.35</td>
</tr>
<tr>
<td>pounds</td>
<td>0.453</td>
</tr>
<tr>
<td>short ton</td>
<td>0.907</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>fluid ounces</td>
<td>29.57</td>
</tr>
<tr>
<td>quarts</td>
<td>0.95</td>
</tr>
<tr>
<td>gallons</td>
<td>3.79</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.03</td>
</tr>
<tr>
<td>cubic yards</td>
<td>0.76</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>Subtract 32 then multiply by 5/9ths</td>
</tr>
<tr>
<td></td>
<td>Celsius multiply by 9/5ths, then add 32</td>
</tr>
</tbody>
</table>

1.0 FACILITY DESCRIPTION

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for disposal at the Low-Level Burial Grounds (LLBG) which are located in the 200 East and 200 West Areas of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

1.1 LOW-LEVEL BURIAL GROUNDS DESCRIPTION

The LLBG are classified as a landfill and cover a total area of approximately 225.0 hectares. The landfill is divided into eight burial grounds. Two of the burial grounds are located in the 200 East Area and six are located in the 200 West Area as follows (Figures 1-1 and 1-2):

<table>
<thead>
<tr>
<th>200 East Area</th>
<th>200 West Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>218-E-10</td>
<td>218-W-3A</td>
</tr>
<tr>
<td>218-E-12B</td>
<td>218-W-3AE</td>
</tr>
<tr>
<td></td>
<td>218-W-4B</td>
</tr>
<tr>
<td></td>
<td>218-W-4C</td>
</tr>
<tr>
<td></td>
<td>218-W-5</td>
</tr>
<tr>
<td></td>
<td>218-W-6</td>
</tr>
</tbody>
</table>

Trench configuration within a burial ground is subject to change as disposal techniques improve or as waste management needs dictate. Mixed waste is disposed in lined trenches or in unlined trenches that are exempt from the liner/leachate collection system requirements. The unlined trenches are used for radioactive waste disposal and are not subject to Resource Conservation and Recovery Act (RCRA) of 1976 or Washington Administrative Code (WAC) 173-303 regulations.

The following sections provide a brief description of the individual burial grounds as well as identifying the generic types of waste disposed in the LLBG. The LLBG operating organization maintains an electronic database that documents each waste receipt and the type and location of waste disposed in the LLBG.

1.1.1 218-E-10 Burial Ground

The 218-E-10 Burial Ground (Figure 1-3) began receiving waste in 1960, and covers approximately 36.1 hectares. Examples of waste placed in this burial ground include failed equipment, rags, paper, rubber gloves, disposable supplies, and broken tools.
1.1.2 218-E-12B Burial Ground

The 218-E-12B Burial Ground (Figure 1-4) is approximately 68 hectares in size and began receiving waste in 1967. Examples of waste placed in this burial ground includes reactor compartments (trench 94), low-level waste, and retrievable transuranic waste.

1.1.3 218-W-3A Burial Ground

The 218-W-3A Burial Ground (Figure 1-5) began receiving waste in 1970, and covers approximately 20.4 hectares. Examples of waste placed in this burial ground include ion exchange resins, failed equipment, tanks, pumps, ovens, agitators, heaters, hoods, jumpers, vehicles, accessories, retrievable transuranic waste, and post-November 23, 1987 RCRA and state-only designated mixed waste.

1.1.4 218-W-3AE Burial Ground

The 218-W-3AE Burial Ground (Figure 1-6) began receiving waste in 1981, and covers approximately 20.0 hectares. Examples of waste placed in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, and post-November 23, 1987 RCRA and state-only designated mixed waste.

1.1.5 218-W-4B Burial Ground

The 218-W-4B Burial Ground (Figure 1-7) began receiving waste in 1968, and covers approximately 3.5 hectares. Examples of waste placed in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, alpha caissons, and retrievable transuranic waste. This burial ground is no longer receiving waste for disposal.

1.1.6 218-W-4C Burial Ground

The 218-W-4C Burial Ground (Figure 1-8) is approximately 20 hectares in size and began receiving waste in 1978. Examples of waste placed in this unlined burial ground include contaminated soil, decommissioned pumps, pressure vessels, transuranic waste, and post-November 23, 1987 RCRA and state-only designated mixed waste.

1.1.7 218-W-5 Burial Ground

The 218-W-5 Burial Ground (Figure 1-9) began receiving waste in 1986 and covers approximately 37.2 hectares. Examples of waste placed in this burial ground include rags, paper, rubber gloves, disposable supplies, broken tools, and post-November 23, 1987 RCRA and state-only designated mixed waste. This burial ground currently contains double-lined mixed waste trenches (trenches 31 and 34) (Figure 1-10). Adjacent to the double-lined mixed waste
trenches are leachate collection tanks. Examples of waste to be placed in the double-lined mixed waste trenches include dangerous waste that has been treated to meet LDR requirements (including bulk waste), macro-encapsulated long-length contaminated equipment, etc.

1.1.8 218-W-6 Burial Ground

The 218-W-6 Burial Ground (Figure 1-11) is approximately 16 hectares in size, has not received any waste, and is reserved for future mixed waste disposal.

1.1.9 Leachate Storage Tanks

The LLBG mixed waste disposal trenches are supported by leachate collection tanks (Figure 1-12). Typically, leachate collection tanks are aboveground, carbon steel tanks, internally coated with an amine-cured epoxy. The leachate collection tanks are located adjacent to the disposal trenches and are provided with secondary containment (DOE/RL-88-20, Chapter 4.0, Section 4.2.3.1). Secondary containment exists for all feed piping. The leachate collection tanks are provided with a portable enclosure to protect the tank and secondary containment from the elements (i.e., rain, snow, etc.). The leachate collection tanks have a current design capacity of 37,850 liters; however, future leachate collection tank capacity might change to accommodate various sized lined trenches. The precise dimensions of leachate collection tanks for trenches 31 and 34 are provided in the construction quality assurance reports identified in DOE/RL-88-20, Chapter 4.0.

1.2 DESCRIPTION OF THE LOW-LEVEL BURIAL GROUNDS PROCESS AND ACTIVITIES

The LLBG are classified as a landfill and will be permitted under WAC 173-303. The LLBG currently accept radioactive waste and mixed waste according to the characteristics of the waste. All mixed waste is disposed in lined mixed waste trenches or other approved alternatives. Waste accepted can be either containerized or bulk solids. Leachate from lined trenches is transferred to leachate collection tanks located in proximity to the lined trenches. The LLBG receive mixed waste from onsite generating units or offsite generators. Typical onsite generating units include research laboratories, chemical and nuclear reprocessing units, decommissioning of structures, waste retrieval and cleanup, waste sampling, etc. Typical offsite generators include research laboratories, chemical and nuclear processing plants, test sites, etc.

Low-level radioactive waste received at the LLBG is placed in trenches and covered with soil for permanent disposal. Mixed waste that meets LDR requirements, as specified in 40 Code of Federal Regulations (CFR) Part 268 and WAC 173-303-140, is disposed in lined trenches with leachate collection and removal systems. The Hanford Facility is required to test such waste to
ensure that the waste or treatment residuals are in compliance with applicable
treatment standards. Such testing is performed according to the frequency
specified in this WAP.

Containerized transuranic waste has been placed in various trenches of
the LLBG since May 1970. Transuranic waste containers were placed on asphalt
pads on the bottom of the trenches or placed on plywood-lined trenches. An
earthen cover over the trenches provides radiological protection. This waste
eventually will be retrieved, processed, and disposed of in accordance with
current federal and state requirements. The low-level portion of the
transuranic waste will be returned to the LLBG and disposed of as low-level
waste. This disposal might take place in the trenches in which the
transuranic waste was removed. The pre-1987 low-level mixed waste portion of
the transuranic waste will be disposed in lined trenches. The transuranic
portion will be processed and prepared for offsite disposal. It is assumed
that the retrieval of transuranic waste will be conducted and completed during
the operational phase of the LLBG. No transuranic mixed waste has been placed
into the LLBG since November 23, 1987.

Two types of mixed waste currently are disposed in the LLBG under
exemption allowed by WAC 173-303-806: remote-handled mixed waste and special
waste (DOE/RL-88-20, Supplement 1, Rev. 1 and DOE/RL-90-12, Rev. 2). Special
waste refers to waste requiring special handling or unusual waste such as
decommissioned reactor vessels.

Hanford Facility waste generating activities are conducted under a common
U.S. Environmental Protection Agency (EPA)/State identification number
(WA7890008967). All waste management activities carried out under the
assigned identification number are considered to be 'onsite' as defined in
WAC 173-303.
Figure 1-1. Locations of low-level burial grounds in the 200 East Area.
Figure 1-2. Locations of Low-Level Burial Grounds in the 200 West Area.
Figure 1-8. 218-W-3A Burial Ground.
Figure 1-6. 218-W-3AE Burial Ground.
Figure 1-7. 218-W-48 Burial Ground.
Figure 1-9. 218-K-5 Burial Ground.
Figure 1-10. Typical Resource Conservation and Recovery Act-Compliant Liner System.
Figure I-11. 218-W-6 Burial Ground.
Figure 1-12. Typical Leachate Storage Tank for Trenches 31 and 34.
This section covers the waste acceptance process for the proper management of waste in the LLBG.

2.0 WASTE ACCEPTANCE PROGRAM

2.1 WASTE CERTIFICATION PROGRAM

The onsite generating unit or offsite generator (for the purposes of this WAP, permitted treatment and storage facilities are classified as either onsite generating units or offsite generators) must have a program to certify characterization of their waste. The onsite generating unit or offsite generator must document their waste certification program on a stream-by-stream basis in the form of waste certification summaries. Each waste certification summary must include a description of methods used for characterizing the applicable waste stream(s). Characterization efforts provide the data quality needed for management of the waste and ensure that waste is packaged properly. A description of the type of information that must be included in a waste certification summary is provided in the following sections.

2.1.1 Waste Certification Information

The basic information required for each waste stream includes the following:

- General information on waste generating process
- Physical characteristics of the waste
- Chemical characteristics of the waste
- Radiological characteristics of the waste
- Packaging
- Supporting documentation (e.g., laboratory analysis, etc.)
- LDR certification (if applicable)

2.1.2 Waste Characterization

Waste must be characterized sufficiently to ensure that the waste meets the acceptance criteria for disposal. It is the responsibility of the onsite generating units and offsite generators to completely and correctly identify and quantify the dangerous constituents of their waste. Characterization can occur using either process knowledge or detailed laboratory analysis or a combination of both. Adequate process knowledge and/or analysis must be available to accurately identify all existing dangerous waste numbers in accordance with WAC 173-303-070, as well as determine the LDR status of the waste. Specific characterization techniques depend on the waste generating process and are as follows:
• Characterization of consistently-generated waste streams

If the waste is being generated through a continuing process, such that the composition of the waste is not expected to vary appreciably over time, waste characterization requirements can be met through administrative and engineering controls on the process. Initially, the waste stream must be characterized through a campaign of sampling and analysis. However, if it can be shown that certain parameters are expected to remain within known limits or where representative sampling is not possible because of the physical form of the waste, gross measurements (e.g., pH, radioactivity screening) and related process knowledge could be substituted for specific chemical sampling and analysis. For each waste stream the following information should be provided in the waste certification summary:

- Specific parameters expected to remain constant (metal content, radionuclide content, etc.)

- Method of ensuring the waste stream characterization remains reliable between sampling campaigns, including an estimate of its reliability as an indicator of correct characterization. Depending on the process involved, gross measurements, process indicators, or other techniques might be appropriate.

- Frequency of recharacterization – if sampling and analysis are required, these must be performed annually, at a minimum, and more frequently if the waste generating process is subject to changes.

• Characterization of Batch Waste Streams

If the waste is being generated through a short-term or infrequent operation, such that the composition of the waste is expected to vary appreciably over time, the waste could be characterized as a batch process. For such operations, the waste certification summary should describe the method for determining batch sizes and the mechanism for grouping waste into batches.

Batches can be defined by the specific waste generating operation with several similar operations grouped together (e.g., the applicable waste collected from several different chemistry laboratories), by the type of waste being generated (e.g., waste oils regardless of the point of origin), by point of origin (e.g., all applicable waste – either soil, liquid, or sludge, but not combinations of the three – from a given structure, regardless of the generating process), or by some other method appropriate to the specific onsite generating unit or offsite generator. For this type of waste stream, the following information should be included in the waste certification summary:

- Method of grouping waste into batches (e.g., by waste type, by point of origin)
- Size of batches characterized in this manner (e.g., the amount of waste collected in 1 week, the number of containers)
- Waste characterization technique (e.g., sampling and analysis or process knowledge).

2.1.3 Process Knowledge

If process knowledge is used in the characterization process, a complete description of the process generating the waste [e.g., original product material safety data sheets (MSDS)] and published characterization methodology on the specific waste stream and/or characterization methodology on similar waste streams must be provided. Field analysis can be used to confirm process knowledge.

If adequate process knowledge exists to ensure a particular constituent is not present in the waste, there is no requirement to analyze for that constituent. However, the waste certification summary must establish that there is no reason to suspect the constituent is in the waste. This can be accomplished by including a detailed process description and/or published data of the process.

2.1.4 Sampling and Analysis

In cases where process knowledge is unavailable or incomplete, the onsite generating units and/or offsite generators characterize the waste by sampling and analyzing the waste stream. Knowledge of the history and origin of the waste can be used to decide the analytical testing needed to determine the dangerous constituents of the waste (e.g., if no reason exists to suspect certain chemical compounds like pesticides, there is no reason to test for such parameters).

The onsite generating units and/or offsite generators determine the appropriate sampling method, conduct all field and sampling quality assurance and quality control (QA/QC), arrange for and coordinate with appropriate analytical laboratories, and document the sampling and analysis activities. The onsite generating units and/or offsite generators must certify that the waste analysis information is complete and accurate. For field activities, requirements will follow SW-846 (EPA 1986). Analytical laboratories will follow requirements stated in the Hanford Analytical Services Quality Assurance Plan (DOE/RL-94-55).

2.1.5 Analytical Methodologies

Specific analytical methodologies that should be used for each parameter should adhere to the guidance provided in SW-846 (EPA 1986), other pertinent references accepted by Ecology, the EPA, and/or the DOE-RL and other equivalent methods approved by Ecology, the EPA, and/or the DOE-RL.
2.2 PRE-SHIPMENT REVIEW

Pre-shipment review takes place before waste can be scheduled for transfer or shipment to the LLBG. The review focuses on whether the waste stream is accurately defined and the LDR status determined correctly. Only waste determined to be acceptable for disposal is scheduled. This determination is based on the information that the onsite generating unit or offsite generator provides. The following sections discuss the pre-shipment review process.

2.2.1 Pre-Shipment Review Process

For each waste transfer or shipment that is a candidate for disposal, the onsite generating unit or offsite generator provides (1) all pertinent chemical, radiological, and physical data requested on the shipping paper; (2) other supporting documentation such as MSDS, analytical data, etc.; (3) a description of the waste contents on the container inventory record; and (4) LDR notification/certification information or equivalent documentation (e.g., national capacity variance, contained-in determination variance, etc.) as applicable. The pertinent information is entered into the Solid Waste Information Tracking System (SWITS).

Based on waste identification information provided, the waste designation is reviewed to ensure consistency with waste designations per WAC 173-303-070, as well as for technical accuracy to ensure the waste meets the waste acceptance criteria. If the transfer or shipment information is found to be acceptable, a final operations review is completed and the transfer or shipment is scheduled.

Where potential nonconformances exist in the information provided, waste characteristics do not match the waste certification summary, or additional constituents are expected to be present that do not appear on the documentation, the onsite generating unit or offsite generator is contacted by the LLBG operating organization or an approved designated organization for resolution.

2.2.2 Methodology to Ensure Compliance with Land Disposal Restrictions Requirements

Only mixed waste that meets the treatment standards of 40 CFR 268 and WAC 173-303-140 will be considered for disposal at the LLBG. Because waste treatment to meet LDR criteria does not occur at the LLBG, all onsite generating units and offsite generators are subject to LDR or any LDR-related variances and are required to submit all the notifications and certifications described in 40 CFR 268.7. The following are general requirements for notifications and supporting documentation.

- The waste is subject to LDR and the onsite generating unit and offsite generator or a permitted treatment unit has treated the waste.
- The onsite generating unit or offsite generator or a permitted treatment unit supplies the appropriate LDR certification information and the analytical data that demonstrate compliance with the LDR treatment standards of 40 CFR 268 and WAC 173-303-140.

- The waste is subject to LDR and the onsite generating unit or offsite generator has determined that the waste naturally meets the LDR treatment standard for disposal.

- The onsite generating unit or offsite generator supplies the appropriate LDR certification information and analytical data necessary to demonstrate compliance with the LDR treatment standards of 40 CFR 268 and WAC 173-303-140.

- If the onsite generating unit or offsite generator develops the certification based on process knowledge, analytical data also might be necessary to demonstrate compliance with the appropriate LDR treatment standard.

- The waste is subject to an exemption from a prohibition on landfill disposal.

- The onsite generating unit and offsite generator submits a notice stating the waste is not prohibited from land disposal as required by 40 CFR 268.7(a)(3).

A representative sample of the waste may be required to be submitted for analysis to ensure that LDR requirements are met. This sample could be submitted directly to a laboratory for analysis.

2.3 WASTE VERIFICATION

Waste verification, which includes LDR verification, consists of testing key physical and chemical properties. Waste verification parameters are selected based on the following criteria:

- The need to identify restricted waste
- Parameters important to the proper management of waste at the LLBG
- Parameters that can be used to corroborate that waste received matches the identity of waste specified on accompanying transfer or shipping papers
- The need to protect employees, the public, and the environment
- Verify waste received is LDR compliant as applicable.

Incoming waste verification is accomplished by reviewing applicable documentation and waste tracking forms or manifests against the waste. Selection of waste for verification is based on the following criteria.
• For radioactive only (non-mixed) waste containers that are disposed of in unlined trenches, an adequate verification rate based upon process knowledge must be used.

• Each bulk solid mixed waste load disposed in the lined trenches will be sampled and analyzed with the exception of large volumes of a single waste from the same process. In this case, five truck loads out of the first 10 truck loads are sampled. In addition, every truck load is inspected visually, any waste showing visible variations in color, texture, or wetness will be subject to sampling as described in Section 3.0.

• For containers disposed in the lined trenches, at least 5 percent or an alternative rate based on process knowledge and/or analytical data must be used.

Verification is performed using a combination of nondestructive examination, physical examination, and/or chemical screening. Verification is performed by the LLBG operating organization or a designated organization for waste acceptance process at the LLBG.

The following special materials might be excluded from verification by chemical sampling:

• Waste containers precluded from opening because of as low as reasonably achievable (ALARA)

• Empty product containers

• Single substance spill material

• Off-specification, contaminated, and/or outdated commercial products in the original product container

• Contaminated debris and asbestos (does not include liquids or soils)

• Other special-case situations handled on a case-by-case basis.

Special materials have been exempted from chemical screening because these materials potentially are hazardous materials (e.g., remote handled, asbestos); are well defined and nonvariable (e.g., single substance spill material or off-specification products); or are unusually difficult to sample and analyze (e.g., empty product containers, contaminated debris, or demolition materials). For these exceptions, the onsite generating unit or offsite generator supplies sufficient chemical and physical characteristics for proper disposal of the waste.

The following material cannot be verified by nondestructive examination:

• Container is shielded

• Container has classified waste
- Container is remote-handled waste
- Container cannot be received for nondestructive examination due to safety, equipment or design limitations.

The following material cannot be verified by visual examination:
- Container would be damaged during opening
- Container has a surface dose rate of 20 millirem per hour or greater (unshielded)
- Container alpha curie loading is greater than 10 nanocuries per gram
- Container has classified waste
- Container is remote-handled waste
- Container cannot be received due to safety, equipment, or design limitations.

The methods for ensuring representative sampling are presented in Section 3.0. As practical, the sampling techniques used for specific types of waste correspond to those referenced in SW-846 and WAC 173-303. The analytical methods chosen for the verification parameters are described in Appendix A.

2.4 CORRECTIVE ACTIONS

Corrective action is necessary when significant discrepancies or nonconformances are identified. All applicable acceptance criteria must be met. Nonconformances must be resolved or addressed before accepting the waste for disposal at the LLBG. Depending on the severity of the nonconformance, the action for noncompliance could range from conditional acceptance to rejection of the entire waste transfer or shipment. The following sections describe nonconformances and the resolution process.

2.4.1 Manifest Discrepancies

Manifest and/or onsite waste tracking form discrepancies are significant discrepancies of quantity or type between the dangerous waste identified by documentation and the dangerous waste that the LLBG operating organization actually receives. Significant discrepancies are obvious physical or chemical differences in dangerous constituents that can be discovered through physical or chemical screening, which would cause the waste to be mismanaged.
2.4.2 Nonconformances

The following are examples of nonconformances that require corrective action:

- Items in a waste container not accounted for on documentation or items not in the container but documented
- Free liquids except condensate
- Extensively damaged, leaking, or open containers
- Waste with appearance discrepancies
- Prohibited items including ignitable, reactive, corrosive, or incompatible waste.

2.4.3 Resolution of Nonconformances and Manifest Discrepancies

The following activities are conducted when nonconformances and waste tracking form and/or manifest discrepancies are encountered.

- Incorrect or incomplete entries on the waste tracking forms or Uniform Hazardous Waste Manifest, or other shipping papers can be corrected or completed with concurrence of the onsite generating unit or offsite generator, and the LLBG operating organization. Corrections are made by drawing a single line through the incorrect entry. Corrected entries are initialed and dated by the individual making the correction.

- The waste packages can be held in an appropriate staging area and the onsite generating unit or offsite generator requested to provide written instructions for correcting the condition before the waste is accepted.

- Waste packages can be returned as unacceptable.

- The onsite generating unit or offsite generator could be requested to correct the condition on the Hanford Facility before the waste is accepted.

- If a noncompliant mixed waste package is received from an offsite generator, and the waste package is nonreturnable because of condition, packaging, etc., and if an agreement on disposition cannot be reached among the involved parties, the issue will be referred to the DOE-RL, Ecology, and other appropriate regulatory agencies for resolution.

- An evaluation will be performed to determine the need to sample previously accepted waste from the noncomplying onsite generating unit.
or offsite generator to determine if any of the waste has the
temperature for similar nonconformances.

For offsite generators, the DOE-RL provides notification to Ecology of
unreconciled manifest discrepancies that are not resolved within 15 days.
Discrepancies for onsite generating units are handled internally with no
notification.

2.4.4 Corrective Actions to Meet Land Disposal Restriction Standards

Waste within tolerances and limits of the LDR treatment standards can
proceed to the LLBG lined trenches for disposal. Waste with one or more
incoming parameters not within tolerances are considered to have an analytical
discrepancy. Discrepancies could be rectified using the following strategy.

- For purposes of evaluating analytical discrepancies, analytical
results are classified into the following five classes.

 - Class 1--The results show that the waste is within the applicable
treatment standard. No additional constituents or characteristics
are detected other than those addressed by the waste specification
sheet, manifest, or waste tracking form.

 - Class 2--The results show that the treatment standards are exceeded,
but the standards are not applicable because the waste is subject to
a statutory or regulatory variance, exemption, or extension.

 - Class 3--The results show that the waste definitely has additional
'new' WAC 173-303 dangerous waste numbers that were not addressed in
the waste specification sheet, manifest, or waste tracking form.

 - Class 4--The results show that the waste has the possibility of
additional 'new' WAC 173-303 dangerous waste numbers that were not
addressed in the waste specification sheet, the manifest, or waste
tracking form.

 - Class 5--Treatment standards are exceeded and the waste is not
subject to any exemption.

For any waste with analytical results in Class 1 or 2, such waste can be
disposed if the waste is otherwise acceptable for disposal.

For waste with analytical results in Classes 3 through 5, the following
additional verification activities are required.

- Class 3 Waste

 - The LLBG operating organization checks to make sure the 'new'
WAC 173-303 dangerous waste number is on the LLBG Part A, Form 3,
permit application.
The LLBG operating organization checks to see whether the new WAC 173-303 dangerous waste number is subject to any exemption, extension, variance, or other exclusion from the requirement of 40 CFR 268.

If the waste is subject to additional treatment standards, the waste is analyzed for compliance with these additional treatment standards.

If the waste is subject to treatment standards and the subsequent analysis shows the waste does not meet the standard, the waste will not be accepted for disposal at the LLBG. Conversely, if the waste meets the treatment standards or if the waste is not subject to the treatment standards and the 'new' WAC 173-303 dangerous waste numbers are on the LLBG Part A, Form 3, permit application and if the waste is otherwise acceptable, the waste can be accepted for disposal at the LLBG.

Class 4 Waste. There are two subcategories of Class 4 waste: possibly characteristic (4A) and possibly listed (4B).

For subcategory 4A, the LLBG operating organization requests analysis of the waste or an extract of the waste for the applicable constituents to determine if a 'new' WAC 173-303 dangerous waste number is applicable to the waste. If a new number is indicated, the LLBG operating organization notifies the onsite generating unit or offsite generator of the finding. If the waste is a subcategory 4B, the LLBG operating organization notifies the onsite generating unit or offsite generator of the finding. The LLBG operating organization discusses the finding with the onsite generating unit or offsite generator to determine if a 'new' WAC 173-303 dangerous waste number should be applied to the waste.

The LLBG operating organization checks to make sure that the 'new' WAC 173-303 dangerous waste number is on the LLBG Part A, Form 3, permit application.

The LLBG operating organization checks to see if the "new" number is subject to any exemption, extension, variance, or other exclusion from the requirements of 40 CFR 268.

If the waste is subject to additional treatment standards, the LLBG operating organization analyzes the waste for compliance for these additional treatment standards.

If the waste is subject to additional treatment standards and the subsequent analysis indicates the waste does not meet the standard, the waste is not accepted for disposal at the LLBG. Conversely, if the waste meets the treatment standard, or if the waste is not subject to the treatment standards and the 'new' WAC 173-303
dangerous number is on the LLBG Part A, Form 3, permit application and if the waste meets all other acceptance criteria, the LLBG operating organization accepts the waste for disposal.

- Class 5 Waste. The LLBG operating organization rejects the waste and informs the onsite generating unit or offsite generator that the waste has not been accepted for disposal. If a manifest or waste tracking form discrepancy exists, the LLBG operating organization reports the discrepancy (Section 2.4).

2.4.5 Periodic Evaluation of Nonconformances

All nonconformances from an onsite generating unit or offsite generator are reviewed periodically to determine if waste generation and management practices are satisfactory. Depending on the review, verification percentages could be adjusted for a given waste stream or other action, such as recharacterization of the waste stream, might be required.

2.5 ACCEPTING THE WASTE

When the waste has been evaluated and when the incoming waste acceptance process has been completed, and nonconformances have been resolved or addressed, the following process is followed for receipt of waste.

- The shipment is compared to the shipping paperwork to verify that the paperwork and shipment match
- The containers are verified to ensure they are in acceptable condition for receipt (e.g., no bulging, corrosion, loose lids, punctures, etc.)
- The manifest is examined and approved
- The manifest is signed and dated
- The waste can proceed as directed to the disposal areas of the LLBG.

Copies of the following records for each waste disposed in the LLBG, as applicable, are maintained by the LLBG operating organization.

- All records providing a description of the waste
- Documentation identifying the dangerous characteristics of the waste
- Laboratory reports with chemical and physical analysis of samples
- Manifests or onsite waste tracking forms.

The onsite generating units and offsite generators maintain copies of onsite waste tracking forms, manifests, and associated documentation identifying the waste characteristics and assigned waste designations.
2.6 MANIFEST SYSTEM

The Hanford Facility has one EPA/State identification number as required by WAC 173-303-060, and all TSD units on the Hanford Facility are part of a single dangerous waste facility. Therefore, onsite transfers of dangerous or mixed waste are not subject to the manifesting requirements specified in WAC 173-303-370 and -180. However, all onsite waste transfers are conducted in a manner to ensure protection of human health and the environment. Onsite waste tracking systems voluntarily are used for transporting waste.

For application in this document, the term "offsite waste" is defined as mixed waste shipped to the LLBG from:

- Any generator or generating unit that is located in an area that is not part of the contiguous Hanford Facility and/or
- Any generator or generating unit from which the shipment of waste is transported over a public access roadway.

Offsite waste shipments are not exempt from the requirements of WAC 173-303-370 and -180.

After scheduling the shipment, the following occurs:

- An offsite generator completes a Uniform Hazardous Waste Manifest for each shipment. An onsite generating unit completes an onsite waste tracking form.
- The transporter receives the waste, and dates and signs the Uniform Hazardous Waste Manifest or onsite waste tracking form. The onsite generating unit or offsite generator dates, signs, and retains a copy of the manifest or the onsite waste tracking form.
- The waste is transported to the LLBG using onsite transportation personnel, or private carrier as applicable. Transporters of offsite mixed waste must have an EPA/State identification number.

Offsite waste arriving at the Hanford Facility is received by receiving personnel. Receiving personnel inspect the waste containers for damage and proper labeling, and review the transportation documentation for completeness and accuracy. If discrepancies are identified, the shipment is not allowed on the Hanford Facility until the discrepancies are resolved. If the shipment passes inspection, the shipment proceeds to the LLBG or other approved TSD.

Following receipt of the waste, the LLBG operating organization ensures the following:

- Manifest discrepancies, if any, are noted on the Uniform Hazardous Waste Manifest or the onsite waste tracking form.
- The transporter is given a signed copy of the Uniform Hazardous Waste Manifest or the onsite waste tracking form, per WAC 173-303-370(2)(c).
For offsite waste shipments, a LLBG operating organization transmits the original Uniform Hazardous Waste Manifest to the offsite generator within 30 days of waste receipt. For onsite waste transfers, the LLBG operating organization transmits a copy of the waste tracking form to the onsite generating unit.

The Uniform Hazardous Waste Manifests and onsite waste tracking forms are maintained in the LLBG operating record.

If a waste arrives at the LLBG in a condition (e.g., bulging, etc.) that could present a hazard to public health or the environment, the building emergency plan for the LLBG could be implemented.

2.7 TRACKING SYSTEM

The LLBG operating organization maintains a record of waste received, and rejected and returned, including names, waste tracking numbers, and the reason the waste was rejected.

On approval for disposal, the waste is assigned a unique number used for tracking waste movement and final disposition. This number is written on the manifest or waste tracking form and is placed on a label for each container. The unique number for bulk waste will be tracked in the tracking system only.

2.8 ADDITIONAL REQUIREMENTS FOR WASTE GENERATED OFFSITE

There are no additional requirements for waste generated offsite.

2.9 METHODOLOGY FOR IGNITABLE, REACTIVE, OR INCOMPATIBLE WASTE

The LLBG does not accept ignitable, reactive, or incompatible waste. All mixed waste accepted for disposal at the lined trenches must meet LDR requirements.
This page intentionally left blank.
3.0 SAMPLING METHODOLOGY

Specific sampling processes depend on both the nature of the material and the type of packaging (Table 3-1). This section describes the sampling methodology.

3.1 SAMPLING METHODOLOGY

As practical, the sampling methodology used for specific types of waste correspond to those referenced in SW-846 and WAC 173-303 (Table 3-1).

3.2 SAMPLING STRATEGIES

The ALARA principle and other worker safety concerns impose a practical limit on the extent of verification evaluation that can be performed on a waste load. The current upper limit set on the surface dose rate for opening containers is 20 millirem per hour. Deviations from this limit can be allowed by a radiation work permit.

In addition to the 20 millirem per hour restriction, the extent of verification evaluation could be limited by an industrial hygienist, who could make a decision that a container not be opened because of the potential for chemical exposure. In both cases, the decision not to open a container is documented in the field files and signed and dated by the industrial hygienist or an authorized representative of radiological control as appropriate, and kept as part of the facility operating record. If a waste package is deemed to be hazardous to worker health, additional containers will be examined for sampling suitability.

Samples from individual containers or the point of generation can be composited providing the samples are: (1) from a single onsite generating unit or offsite generator, (2) related to one waste specification record, or (3) similar in appearance and composed of compatible material. If the sample material shows significant variation in moisture content, texture, or color, this material should not be composited to avoid masking potentially regulated constituents.

3.2.1 Container Sampling

Sampling of small containers varies with the nature of the material, as well as the type of container. However, the appropriate SW-846 method or protocol will be followed with each sampling campaign. Solid material that cannot be penetrated to an appropriate depth with standard sampling equipment is sampled to the best extent possible with available equipment. Otherwise a representative sample will be taken by drawing a full vertical sample of the waste container.
3.2.2 Point of Generation Sampling (Bulk Loads)

If an onsite generating unit or offsite generator produces a large volume
of a single waste from the same process, 50 percent of the transfer or
shipment is sampled during loading at the point of generation. In addition,
every truck is inspected visually during loading and any load showing visible
variations in color, texture, or wetness is subject to sampling. If there is
no variation among the sampled material, the sampling regime is reduced. If
the sampled materials do show variation, 50 percent sampling frequency could
be reinstituted for the next 10 loads. If these next 10 loads do not show any
variation, the frequency will again be reduced.

3.2.3 Collected Leachate Sampling

To ensure compliance with LDR and to provide continuity of sampling
between single-source and multi-source operations, any F039 (multi-source
leachate) waste generated is analyzed by the LLBG operating organization to
determine what constituents are present. The initial (baseline) analysis
following disposal of mixed waste will check for all regulated constituents in
F039. The LLBG operating organization is responsible for obtaining an initial
analysis of constituents in the collected leachate. Based on the results of
analysis, and any other information that should be considered, the LLBG
operating organization develops a list of constituents to be analyzed on an
established schedule. This testing schedule will be supplemented with perhaps
less frequent, broader analysis to ensure that changes in the composition of
the leachate are detected and noted. This approach alleviates Hanford
Facility treatment, storage, and/or disposal units (e.g., Double-Shell Tank
System, 200 Area Effluent Treatment Facility, etc.,) receiving the leachate
from conducting duplicate F039 testing, as well as providing an accurate
assessment of the waste constituents.

3.3 LAND DISPOSAL RESTRICTED WASTE SAMPLING

Waste material that is received at a lined landfill must meet LDR. This
waste also must have a sample taken. Materials that have been set up in grout
or concrete might not be sampled if ALARA concerns prohibit the sampling. One
of three sampling scenarios could take place: (1) the onsite generating unit
or offsite generator provides a small sample of grouted material in a
pre-approved quantity and container for sampling, (2) the waste container is
sampled at the point of generation, or (3) the waste container is sampled at
the burial trench.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td>Free-flowing liquids and slurries</td>
<td>COLIWASA, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Solidified liquids</td>
<td>Sludges</td>
<td>Trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Sludges</td>
<td>Sludges</td>
<td>Trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Soils</td>
<td>Sand or packed powders and granules</td>
<td>Auger, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Absorbents</td>
<td>Large-grained solids</td>
<td>Large trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Wet absorbents</td>
<td>Moist powders or granules</td>
<td>Trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Process solids and salts</td>
<td>Moist powders or granules</td>
<td>Trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Dry powders or granules</td>
<td>Thief, SW-846, Chapter 9</td>
<td>Crushed or powdered materials</td>
</tr>
<tr>
<td>Sand or packed powders</td>
<td>Auger, SW-846, Chapter 9</td>
<td>Soil-like material</td>
</tr>
<tr>
<td>Large-grained solids</td>
<td>Large trier, SW-846, Chapter 9</td>
<td>Soil- and rock-like material</td>
</tr>
<tr>
<td>Ion exchange resins</td>
<td>Moist powders or granules</td>
<td>Trier, SW-846, Chapter 9</td>
</tr>
<tr>
<td>Dry powders or granules</td>
<td>Thief, SW-846, Chapter 9</td>
<td>Fly ash-like material</td>
</tr>
<tr>
<td>Sand or packed powders</td>
<td>Auger, SW-846, Chapter 9</td>
<td>Soil-like material</td>
</tr>
</tbody>
</table>

COLIWASA = composite liquid waste sampler.
NA = not applicable.
4.0 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM

The following sections discuss the overall objectives of the waste analysis program, as well as the specific data quality objectives (DQOs) (Table 4-1). Specific field and laboratory QA/QC requirements to meet these objectives also are addressed.

4.1 OBJECTIVES OF THE WASTE ANALYSIS PROGRAM

The primary objective of the waste analysis program is to ensure that the waste disposed at the LLBG is characterized adequately to demonstrate the disposal requirements are met. The waste analysis program is designed to meet this objective, and the general waste analysis requirements of WAC 173-303-300 and the disposal restrictions of WAC 173-303-140(4) and 40 CFR 268 if applicable.

4.2 DATA QUALITY OBJECTIVES

The data used to support the LLBG waste analysis program needs to be scientifically sound, of known quality, and thoroughly documented. In DQOs for the waste characterization and verification program, the standard parameters (precision, accuracy, compatibility, completeness, and representativeness) were considered (DOE/RL-94-55).

The field data for verification testing will meet EPA quality level I and II criteria. The laboratory data for chemical analyses will meet EPA quality level III criteria. Data from radiological analyses will meet EPA quality level V criteria (DOE/RL-94-55).

4.3 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

Field blanks and replicates are required for samples analyzed in the field as part of verification testing as well as for samples submitted for laboratory analysis. The number of field QA samples is 10 percent of the total number of field samples taken. The 10 percent criterion commonly is accepted as a minimum number of QA/QC samples.

4.4 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

The laboratory QA/QC requirements outlined in the following apply to laboratory analyses requested by the LLBG operating organization for residuals characterization or for recharacterization as part of a corrective action. Most laboratory analyses for waste characterization are conducted by the onsite generating units or offsite generators, who are required to specify in Section 2.0.
The daily quality of analytical data generated in the contracted analytical laboratories is controlled by the implementation of an analytical laboratory QA plan.

Before commencement of the contract for analytical work, the laboratory submits its QA plan to the waste analysis project manager and the QA officer for approval. At a minimum, the plan documents the following:

- Sample custody and management practices
- Sample preparation and analytical procedures
- Instrument maintenance and calibration procedures
- Internal QA/QC measures, including the use of method blanks
- Sample preservatives used
- Analyses requested.
Table 4-1. Low-Level Burial Ground Data Quality Objectives for Waste Analysis Program.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Waste analysis activity</th>
<th>Data quality/analytical level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste characterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain and document the information necessary to properly designate waste</td>
<td>Specify parameters to be evaluated for waste characterization</td>
<td>Level III for chemical analysis; Level V for radionuclide analysis</td>
</tr>
<tr>
<td></td>
<td>Require waste certification summaries for each waste stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Document information and documentation of waste characterization</td>
<td></td>
</tr>
<tr>
<td>Confirm that the data collected for waste characterization are of sufficient quality to support waste management decisions</td>
<td>Specify information required to document process knowledge</td>
<td>Level III for chemical analysis; Level V for radionuclide analysis</td>
</tr>
<tr>
<td></td>
<td>Specify sampling and analytical methods to be used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste characterization process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specify QA requirements</td>
<td></td>
</tr>
<tr>
<td>Confirm that waste characterization information is up to date</td>
<td>Implement for all new or nonroutine waste streams</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>At a minimum, require annual recharacterization of routine waste streams if waste generating process changes</td>
<td></td>
</tr>
<tr>
<td>Identify and reject waste that does not meet LLBG's acceptance criteria</td>
<td>Implement pre-shipment review process</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Implement waste verification program</td>
<td></td>
</tr>
<tr>
<td>Tests for compliance with numerical treatment standards of 40 CFR 268</td>
<td>Specify concentrations for all LDR with numerical standards</td>
<td>Level III for chemical analysis</td>
</tr>
<tr>
<td></td>
<td>Specify LDR documentation requirements</td>
<td></td>
</tr>
<tr>
<td>Waste verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that the waste received matches the accompanying documentation and is what was expected by LLBG</td>
<td>Check completeness of shipping papers and screen all waste containers for surface dose and weight measurements to identify obvious discrepancies between the waste received, and the accompanying documentation</td>
<td>Level I/Level II</td>
</tr>
<tr>
<td></td>
<td>Perform real-time radiography or visual inspection and fingerprint analysis on a percentage of the containers received to confirm that the waste matches the waste tracking</td>
<td></td>
</tr>
<tr>
<td>Confirm that no restricted waste forms are present</td>
<td>Review inventory for all waste containers received</td>
<td>Level I/Level II</td>
</tr>
<tr>
<td></td>
<td>Perform nondestructive examination or visual inspection on a percentage of containers received</td>
<td></td>
</tr>
<tr>
<td>Confirm that the data collected during the verification evaluation are of sufficient quality to support waste management decisions</td>
<td>Require regular, documented calibration and reagent checks for testing equipment and supplies</td>
<td>Level I/Level II</td>
</tr>
<tr>
<td></td>
<td>Require field blanks and replicates</td>
<td></td>
</tr>
</tbody>
</table>

LDR = land disposal restriction.
NA = not applicable.
NDE = nondestructive examination
QA = quality assurance.
WAP = waste analysis plan.
5.0 SPECIAL REQUIREMENTS FOR LAND DISPOSAL RESTRICTION WASTE

The LLBG operating organization ensures that all mixed waste restricted from land disposal meets the treatment standards of WAC 173-303-140(4) and 40 CFR 268, Subpart D, before acceptance for disposal. The LLBG operating organization does not place in lined trenches any mixed waste restricted under 40 CFR 268, Subpart C, that does not meet the treatment standards of 40 CFR 268, Subpart D, unless:

- Such waste is subject to a national variance
- Contained-in petition is granted
- Equivalent treatment under 40 CFR 268.42(b) is granted
- A petition under 40 CFR 268.6 is granted
- An extension under 40 CFR 268.5 is given
- A treatment standard variance under 40 CFR 268.44 is granted.

Listed waste numbers F020, F021, F022, F023, F026, and F027 (dioxin-containing waste) are prohibited from land disposal; the LLBG operating organization does not accept waste containing these waste numbers.

Waste containing halogenated organic compounds (HOCs) in total concentration greater than or equal to 1,000 milligrams per kilogram are prohibited from land disposal and are not accepted for disposal. Specific methods for analyzing the HOCs (otherwise referred to as total organic halides (TOX)) are described in Appendix B.

The LLBG operating organization performs detailed physical and chemical analysis in accordance with Section 2.0. This applies to waste that is both treated and that naturally meets the treatment standards specified in 40 CFR 268. At a minimum, corroborative testing will be conducted annually on a designated sample (e.g., the pre-acceptance sample). Waste characterization might be required more frequently under the following circumstances:

- A new waste stream is generated.
- A process generating the waste changes.
- The waste characteristics are highly variable from load to load.
- The LLBG operating organization has reason to suspect a change in the waste based on inconsistencies in manifesting, packaging, or labeling of the waste.

Each waste is analyzed for those LDR constituents contained in the listed and characteristic numbers identified by the onsite generating unit or offsite generator that cause the waste to be dangerous. Onsite generating units or offsite generators might test waste or use process knowledge to determine LDR status. Treatment standards to which the waste is subject use 40 CFR 268, Appendix I, SW-846, or EPA-600 methods. However, when it can be shown that a treatment standard has been met through an analysis other than for the
established analysis methods, the requirement for the analysis of the treatment standard may be waived by the LLBG operating organization.
6.0 RECORDKEEPING

This WAP is maintained with the LLBG operating organization or other approved organizations manuals containing all documents referenced in this plan—except for laboratory documents, which are maintained at the laboratories. Records associated with this WAP and waste verification program are maintained by the LLBG operating organization.

A copy of the waste disposal record for each waste stream accepted at the LLBG also is maintained. Onsite generating units and offsite generators maintain their sampling and analysis records, and the LLBG operating organization could request copies of this information. All records and results of waste analysis are maintained in the LLBG operating record.

This WAP will be revised under the following circumstances.

- Whenever test methods are changed.
- Whenever changes occur in the waste acceptance criteria or the waste categories accepted for disposal that might require a change in the parameters to be tested.
- Whenever referenced personnel, organizations, or procedures are changed.
- Whenever regulation changes occur that affect the WAP.

The DOE-RL may implement any proposed change once Ecology is notified. However, if the change eventually is disapproved, the DOE-RL will be responsible for fulfilling any requirements that were not met because of implementation of the change.

This WAP is maintained as a controlled document under the existing guidelines for document control within the LLBG operating organization. Documents are maintained in the LLBG operating record and are forwarded to the onsite document control organization for permanent storage.
This page intentionally left blank.
7.0 REFERENCES

APPENDICES

CONTENTS

7 A ANALYTICAL PROCEDURES AND RATIONALE
8 B TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE
10 C FINGERPRINT PARAMETER SELECTION
This page intentionally left blank.
APPENDIX A

ANALYTICAL PROCEDURES AND RATIONALE
This page intentionally left blank.
APPENDIX A

ANALYTICAL PROCEDURES AND RATIONALE

These analytical procedures are designed to identify or screen specific waste components. Because the characterization provides information concerning the distribution and nature of waste constituents within the waste material, and the LLBG operating organization is merely identifying that previously submitted information is correct rather than completely characterizing the waste, a less comprehensive sampling and analytical approach is appropriate.

The analytical screening parameters that could be used for waste received at the LLBG for disposal, associated rationale, and methods for these analyses are as follows:

- **Physical description** is used to determine the general characteristics of the waste. This facilitates subjective comparison of the sampled waste with previous waste descriptions or samples. Also, a physical description is used to verify the observational presence or absence of free liquids.

 Methods--samples are inspected and the physical appearance of the waste is recorded. Real-time radiography and/or visual examination is used.

- **Radioactivity screen** is used to quantify radionuclides for verification of transuranic radionuclide content, non-transuranic radionuclide content, and the waste classification (i.e., low-level waste or transuranic)

 Methods--a sample of the waste is passed by a geiger counter, survey meter, or a waste container is assayed using passive-active neutron or segmented gamma scanning techniques.

- **Headspace volatile organic compound analysis** is performed to determine the presence or absence of solvents or other volatile organic compounds in waste. This is one of the few methods available to evaluate the presence of volatile organic compounds that could be associated with heterogeneous materials.

 Methods--a sample of the headspace gases in a container are analyzed by one or more of the following: Fourier transform infrared spectroscopy, gas chromatography/mass spectroscopy, HNU, organic vapor analyzer, and colorimetric tubes.
• **Paint filter liquids test** is used to verify the presence or absence of free liquid in solid or semisolid material to be landfilled.

Method— to a standard paint filter, 100 centimeters or 100 grams of waste are added and allowed to settle for 5 minutes. Any liquid passing through the filter signifies failure of the test (SW-846 Method 9095).

• **pH screen** is used to identify the pH and corrosive nature of an aqueous or solid waste, aid in establishing compatibility strategies, and to indicate if the waste is acceptable for disposal in the LLBG.

Methods— full range pH is used for the initial screening. If the initial screen indicates a pH below 2 or above 12.5, a pH meter is used. The pH meter is used directly on liquid samples and on the free liquid portion of liquid/solid samples. For solid materials, the pH of the solution from a 1:1 slurry of water to waste is used (or ASTM Method D4980).

• **Flammability potential screen** is used to determine the fire-producing potential of the waste. This test can be applied to waste liquids, solids, and semisolids.

Methods— liquids are tested using the HAZCAT combustibility, char and/or oxidizer tests; solids and semisolids are tested using the HAZCAT char and/or oxidizer tests.

• **Water reactivity screen** is used to determine if the waste has the potential to react vigorously with water to form gases or other reaction products.

Method— approximately 5 grams of solid or 5 milliliters of liquid waste are mixed with about 5 milliliters of water. For liquid waste, water is added to the waste. The solution is observed for evidence or fuming, bubbling, or spattering. These reactions are considered to be positive evidence that the waste is water reactive.

• **Cyanide screen** indicates whether the waste produces hydrogen cyanide upon acidification below pH 2.

Method— to a test tube or beaker containing approximately 5 milliliters of sample, an equal amount of freshly prepared ferrous ammonium citrate is added. 3 Normal hydrochloric acid is then used to reduce the pH of the solution to about 2.0. A deep blue color indicates the presence of cyanide. The test can detect free cyanide and complex cyanides in concentrations above 200 parts per million.

1 HAZCAT is a registered trademark of Haztech Systems Incorporated, San Francisco, California.
• **Sulfide screen** is used to indicate if the waste produces hydrogen sulfide upon acidification below pH 2.

Methods—approximately 5 milliliters of sample is added to beaker or test tube and enough 3 Normal hydrochloric acid is added to bring the pH down to 2.0. A sulfide test strip is placed in the solution. If the paper turns brown or silvery black, the presence of sulfides in the sample is indicated. If there is no color change, the total sulfides are reported as nondetectable.

• **Metals and elements screen** is used to determine the presence of regulated quantities of heavy metals in the waste and confirm the presence or absence of other inorganic elements. This method is used as a confirmation of other test results.

Method—waste samples are tested using an x-ray fluorescence spectrometer and/or the toxicity characteristics leaching procedure extraction method (SW-846 Method 1311). For the x-ray fluorescence spectrometry method, spectral data are obtained by putting a small sample of waste in special sample cups or by holding the detector up to the waste to be analyzed. The resulting spectra are analyzed for the presence of elements and heavy metals.

• **Volatile and semivolatile compounds screen** is used to evaluate the presence or absence of volatile and/or semivolatile organic compounds in the waste, and to verify the treatment standards associated with organic chemical content.

Methods—waste is tested using Fourier transform infrared spectroscopy, Fourier transform raman spectroscopy, and/or gas chromatography/mass spectroscopy. Depending on the waste matrix, an experienced spectroscopist uses the testing method best suited for the waste and interprets the results.

• **PCB screen** is used to indicate whether PCBs are present in oil-bearing waste and to determine if the waste needs to be managed in accordance with the regulations prescribed in the *Toxic Substance Control Act of 1976*.

Method—the tests to be conducted include the HAZCAT beilstein test, and/or the appropriate organic chlorine test.
This page intentionally left blank.
APPENDIX B

TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE
APPENDIX B

TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE

This appendix addresses the guidelines and processes by which the LLBG operating organization determines the applicability and demonstrates compliance with the LDR regulations for waste with HOCs. The appropriate screening methods will be used for TOX.

Pre-Shipment Characterization for Halogenated Organic Compounds or Total Organic Halides

A determination as to the applicability of the HOCs is made during the pre-shipment acceptance testing. This determination is based on the results of TOX analysis or based on results of the individual compounds listed in Appendix III of 40 CFR 268. This determination is made by the onsite generating unit or offsite generator before shipment as part of the information to be submitted to the LLBG operating organization.

Waste Verification for Total Organic Halides

The LLBG operating organization samples and analyzes for TOX at least 20 percent of all incoming waste streams that have pre-shipment TOX readings above 500 milligrams per kilogram to ensure the incoming waste arrives with TOX levels below 1,000 milligrams per kilogram.

If the incoming waste contains less than 1,000 milligrams per kilogram of TOX, the material is considered for land disposal if all other waste acceptance criteria are met. If the TOX test indicates greater than 1,000 milligrams per kilogram of TOX is present, the waste is subjected to further analysis to determine if the HOC concentration exceeds 1,000 milligrams per kilogram as described in the next section.

Land Disposal Prohibition for Shipments with Excessive Levels of Total Organic Halides

The LLBG operating organization does not dispose of any mixed waste where waste analysis results for TOX exceeds 1,000 milligrams per kilogram of TOX unless the comprehensive analysis criteria are performed to demonstrate that the HOC level in such waste does not exceed 1,000 milligrams per kilogram. Laboratory analysis, in accordance with EPA approved methods, is performed to determine the concentration of each constituent listed in Appendix III of 40 CFR 268. If the laboratory results indicate the sum of the California List HOCs in the waste does not exceed 1,000 parts per million, the LLBG operating organization land disposes this waste stream after recording these data in the operating record.
Annual Total Organic Halides Analysis and Re-characterization of Waste for High Total Organic Halides

Annually, the LLBG operating organization analyzes a sample of each non-high TOX waste stream for recharacterization of the high TOX classification. The TOX analysis is performed on a sample taken from an incoming shipment. Should the waste exceed 500 milligrams per kilogram of TOX, the waste is recharacterized as a high TOX waste and thereafter is analyzed for TOX at the high TOX frequency. High TOX waste remains high TOX waste thereafter. The annual high TOX recharacterization is not required for high TOX waste because waste already is sampled at the high TOX frequency.

Additional Recordkeeping Requirements for High Total Organic Halides Analysis Results

The LLBG operating organization maintains the following additional records pertaining to TOX analysis in the operating record:

- A list of high TOX waste streams that are accepted at the LLBG.
- The results of the annual characterization analysis for high TOX/non-high TOX waste.
- The results of the incoming shipment analyses for TOX for both high TOX and non-high TOX waste.

Total Organic Halides Screening Protocol Sample Preparation and Analysis

Method 9020 or 9022 determines TOX as chloride in aqueous waste solutions. Using this method for analysis, the LLBG operating organization prepares and analyzes an extract for all waste that is nonaqueous in nature. The LLBG operating organization uses Method 3540 (soxhlet) or Method 3550 (sonification), which are extraction procedures described in SW-846 to prepare this extract. The extract is referred to as 'solid waste extracts'.

If significant stratification occurs in the waste, each layer might be composited in proportion to the estimated volume. These samples sufficiently are mixed to allow a representative sample of the waste to be analyzed.
APPENDIX C

FINGERPRINT PARAMETER SELECTION
This page intentionally left blank.
APPENDIX C

FINGERPRINT PARAMETER SELECTION

The following parameters have been selected for fingerprint analysis of waste materials being received at the LLBG:

- Flammability or Head Space VOC/SVOC - Flammability tests will be conducted when safety conditions exist that eliminate the spread of radioactive material to the worker or environment via open flame testing. Head space analysis, volatile organic compounds, or semivolatile organic compound analysis will be tested in place of open flame tests as needed using appropriate analytical equipment. Oxidizing materials that could contribute to the propagation of a fire also will be analyzed.

- Paint Filter Liquid Screening - When needed, this analysis will be used to determine if free liquids potentially are present in a waste shipment.

- pH - pH screening is conducted to identify waste that might mobilize toxic materials and corrode waste handling or storage containers.

- Organic Halogen - This screening is conducted to identify the presence of persistent or land ban materials; a precursor for PCB screening if the test is positive.

- PCBs - PCB waste is regulated specifically by federal and state regulations. These regulations must be met for disposal of PCB waste at the LLBG.

- H₂O Reactivity - This test is conducted to determine if a waste material has the potential to react vigorously with water or form toxic gases.

- Sulfide - This test is conducted to determine if a waste material might produce hydrogen sulfide, a toxic gas formed below pH 2.

- Cyanide - This test is conducted to determine if a waste material might produce hydrogen cyanide below pH 2.

- Metals (as appropriate for trenches 31 and 34) - When needed, x-ray fluorescence or toxicity characteristic leaching procedure methods will be conducted.
This page intentionally left blank.