Processing and Characterizing Alumina/Aluminum Composites with Tailored Microstructures Formed by Reactive Metal Penetration

PDF Version Also Available for Download.

Description

In industry, the need to maximize energy efficiency depends on the availability of suitable advanced materials. Ceramic composites are exemplary materials for many advanced engineering applications because they exhibit good thermal stability, oxidation resistance and enhanced toughness. Presently, ceramic composite fabrication processes are costly, often requiring high temperatures and pressures to achieve reasonable densities. Our research is focused on developing a processing technique, that will allow production of alumina/aluminum composites using relatively low temperatures and without the application of an external force, thus reducing the processing costs. Our composites were formed using Reactive Metal Penetration (RMP), which is a process ... continued below

Creation Information

Corral, E.; Ellerby, D.; Ewsuk, K.; Fahrenholtz, B. & Loehman, R. January 28, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In industry, the need to maximize energy efficiency depends on the availability of suitable advanced materials. Ceramic composites are exemplary materials for many advanced engineering applications because they exhibit good thermal stability, oxidation resistance and enhanced toughness. Presently, ceramic composite fabrication processes are costly, often requiring high temperatures and pressures to achieve reasonable densities. Our research is focused on developing a processing technique, that will allow production of alumina/aluminum composites using relatively low temperatures and without the application of an external force, thus reducing the processing costs. Our composites were formed using Reactive Metal Penetration (RMP), which is a process involving the reaction of molten Al with a dense ceramic preform. The result is a near net shape ceramic/metal composite with interpenetrating phases. The volume fraction of metal in the composites was varied by doping an aluminosilicate ceramic preform with silica. For this study we fabricated composites using pure mullite and mullite doped with 23 and 42 weight percent silica, yielding 18, 25, and 30 volume percent metal in the composites, respectively. Optical and Scanning Electron Microscopy were used to characterize the homogeneity and scale of the microstructure. The scale of the microstructure varied with preform composition, the reaction temperature and with secondary heat treatments. Four-point bend testing was used to evaluate the influence of microstructure on strength and reliability. During these studies a gradient in the microstructure was observed, which we further characterized using microhardness testing. Alumina/aluminum composites formed by RMP show higher toughness then monolithic alumina and have the potential for improved reliability when compared to monolithic ceramics.

Source

  • Mexican American Engineers and Scientists National Conference; San Antonio, TX; 01/20-24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003310
  • Report No.: SAND99-0237C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 3310
  • Archival Resource Key: ark:/67531/metadc689013

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 28, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 30, 2016, 6:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 30

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Corral, E.; Ellerby, D.; Ewsuk, K.; Fahrenholtz, B. & Loehman, R. Processing and Characterizing Alumina/Aluminum Composites with Tailored Microstructures Formed by Reactive Metal Penetration, article, January 28, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc689013/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.