Induced star formation and morphological evolution in very high redshift radio galaxies

PDF Version Also Available for Download.

Description

Near-infrared, sub-arcsecond seeing images obtained with the W M Keck I Telescope of show strong evolution at rest-frame optical wavelengths in the morphologies of high redshift radio galaxies (HzRGs) with 1 9 < z < 4 4 The structures change from large-scale low surface brightness regions surrounding bright, multiple component and often radio-aligned features at z > 3, to much more compact and symmetrical shapes at z < 3 The linear sizes ({approximately} 10 kpc) and luminosities (M{sub B} {approximately} -20 to -22) of the individual components in the z > 3 HzRGs are similar to the total sizes and ... continued below

Physical Description

13 p.

Creation Information

van Breugel, W. J. M. October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Near-infrared, sub-arcsecond seeing images obtained with the W M Keck I Telescope of show strong evolution at rest-frame optical wavelengths in the morphologies of high redshift radio galaxies (HzRGs) with 1 9 < z < 4 4 The structures change from large-scale low surface brightness regions surrounding bright, multiple component and often radio-aligned features at z > 3, to much more compact and symmetrical shapes at z < 3 The linear sizes ({approximately} 10 kpc) and luminosities (M{sub B} {approximately} -20 to -22) of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal, radio-quiet, star forming galaxies seen at z = 3 - 4 `R`-band, 0 1`` resolution images with the Hubble Space Telescope of one of these HzRGs, 4C41 17 at z = 3 800, show that at rest-frame UV wavelengths the galaxy morphology breaks up in even smaller, {approximately} 1 kpc-sized components embedded in a large halo of low suface brightness emission The brightest UV emission is from a radio-aligned, edge-brightened feature (4C41 17.North) downstream from a bright radio knot A narrow-band Ly-{alpha} image, also obtained with HST, shows an arc-shaped Ly-{alpha} feature at this same location, suggestive of a strong jet/cloud collision Deep spectropolarimetric observations with the W M Keck II Telescope of 4C41 17 show that the radio-aligned UV continuum is unpolarized Instead the total light spectrum shows ahsorption lines and P-Cygni type features that are similar to the radio-quiet z = 3 - 4 star forming galaxies This shows that the rest-frame UV light in 4C41 17 is dominated by starlight, not scattered light from a hidden AGN The combined HST and Keck data suggest that the radio--aligned rest-frame UV continuum is probably caused by jet-induced star formation The strong morphological evolution suggests that we see the first evidence for the assemblage of massive ellipticals, the parent population of very powerful radio sources at much lower redshifts The presence of radio aligned features in many of the z > 3 HzRGs suggests, by analogy to 4C41 17, that jet-induced star formation may be a common phenomenon in these galaxies in their early stages of formation

Physical Description

13 p.

Notes

OSTI as DE98058842

Other: FDE: PDF; PL:

Subjects

Source

  • The most distant radio galaxies, Amsterdam (Netherlands), 15-17 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98058842
  • Report No.: UCRL-JC--131159
  • Report No.: CONF-9710258--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 295442
  • Archival Resource Key: ark:/67531/metadc688978

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 10, 2017, 1:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

van Breugel, W. J. M. Induced star formation and morphological evolution in very high redshift radio galaxies, article, October 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc688978/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.