Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures

PDF Version Also Available for Download.

Description

Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for ... continued below

Physical Description

11 p.

Creation Information

Jin, Z.; Cady, C.; Gray, G. T., III & Kim, Y.-W. October 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for both strain rates. As the strain rate increases, the strain hardening rate plateaus extended to higher temperatures. The strain rate sensitivity increases slightly with temperature (but less than 0.1) for strain rates above 0.001 sec{sup -1}. However, at a strain rate of 0.001 sec{sup -1}, there is a dramatic increase in the strain rate sensitivity with temperature; above 1100 C, the rate sensitivity becomes much larger. Microcracks occurring in grain interiors and at grain boundaries were observed at all strain rates and temperatures. Formation and distribution of microcracks were found to vary depending on strain rate and deformation temperature.

Physical Description

11 p.

Notes

OSTI as DE96014931

Source

  • American Society of Mechanical Engineers (ASME) and Metals materials week, Cincinnati, OH (United States), 6-10 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96014931
  • Report No.: LA-UR--96-3075
  • Report No.: CONF-961017--8
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 394365
  • Archival Resource Key: ark:/67531/metadc688926

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 29, 2016, 9:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jin, Z.; Cady, C.; Gray, G. T., III & Kim, Y.-W. Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures, article, October 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc688926/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.