Loss measurements and stoichiometric dependence of Ti and O implanted LiNbO{sub 3} waveguides

PDF Version Also Available for Download.

Description

Planar waveguides created by the implantation at 500 C of 2.5 x 10{sup 17} Ti ions/cm{sup 2} and 2.5, 5.0 and 7.5 x 10{sup 17} O ions/cm{sup 2} have been characterized for loss by the scattered light and cutback techniques. Results indicate losses of less than 2.5 dB/cm to 3 dB/cm for waveguides with a Ti:O ratio of 1:3 and losses of over 7 dB/cm{sup 2} for waveguides with Ti:O ratios of 1:1 and 1:2.

Physical Description

12 p.

Creation Information

Williams, E.K.; Ila, D.; Sarkisov, S.; Venkateswarlu, P.; Poker, D.B. & Hensley, D.K. October 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Planar waveguides created by the implantation at 500 C of 2.5 x 10{sup 17} Ti ions/cm{sup 2} and 2.5, 5.0 and 7.5 x 10{sup 17} O ions/cm{sup 2} have been characterized for loss by the scattered light and cutback techniques. Results indicate losses of less than 2.5 dB/cm to 3 dB/cm for waveguides with a Ti:O ratio of 1:3 and losses of over 7 dB/cm{sup 2} for waveguides with Ti:O ratios of 1:1 and 1:2.

Physical Description

12 p.

Notes

INIS; OSTI as DE97000767

Source

  • IBMM `96: 10. international conference on ion beam modification of materials, Albuquerque, NM (United States), 1-6 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97000767
  • Report No.: CONF-960994--14
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/418492 | External Link
  • Office of Scientific & Technical Information Report Number: 418492
  • Archival Resource Key: ark:/67531/metadc688923

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 3, 2016, 9:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Williams, E.K.; Ila, D.; Sarkisov, S.; Venkateswarlu, P.; Poker, D.B. & Hensley, D.K. Loss measurements and stoichiometric dependence of Ti and O implanted LiNbO{sub 3} waveguides, report, October 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc688923/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.