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Cross-Calibration of Neutron Detectors for Deuterium-Tritium 
Operation in TFTR 

L. C. Johnson, Cris W. Barnes,3) H. H. Duong,") W. W. Heidbrink.c) 
D. L. Jassby, M. J. Loughlin^) A. L. Roquemore, E. Ruskov,c> and 

J. D. Strachan 

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 

During the initial deuterium-tritium experiments on TFTR, neutron 
emission was measured with 235U and 2 3 8 U fission chambers, silicon 
surface barrier diodes, spatially collimated 4He proportional counters and 
ZnS scintillators, and a variety of elemental activation foils. The activation 
foils, 4He counters and silicon diodes can discriminate between 14 MeV 
and 2.5 MeV neutrons. The other detectors respond to both DD and DT 
neutrons but are more sensitive to the latter. The proportional counters, 
scintillators, and some of the fission chambers were calibrated absolutely, 
using a 14-MeV neutron generator positioned at numerous locations inside 
the TFTR vacuum vessel. Although the directly calibrated systems were 
saturated during the highest power deuierium-tritium operation, they 
allowed cross-calibration of less sensitive fission chambers and silicon 
diodes. The estimated absolute accuracy of the uncertainty-weighted 
mean of these cross-calibrations, combined with an independent 
calibration derived from activation foil determinations of total neutron yield, 
is ±7%. 

a) Los Alamos National Laboratory. b> General Atomics. 
c) University of California Irvine. d> JET Joint Undertaking. 
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I. INTRODUCTION 

High power deuterium-tritium experiments in TFTR began in 
December 1993. The highest fusion power attained up to the present is 
about 6.2 MW. This paper describes the detection systems used to 
measure DT fusion neutrons in TFTR and the procedures for calibrating 
those systems. 

The principal neutron detection systems in use on TFTR during 
deuterium-tritium operation are listed in the accompanying table and 
figures. As indicated in the table, some of the detectors were calibrated in 
situ in February 1993 using a DT neutron generator inside the vacuum 
vessel to map the detector response functions. The directly calibrated 
detectors, together with independent activation foil measurements, were 
used to calibrate less sensitive detectors whose linear operating ranges 
extend beyond 10 1 8 n/s. Analysis of the uncertainties of the individual 
cross-calibrations yields a weighted-mean efficiency for each of the less 
sensitive detectors and an estimate of the uncertainty of the resulting DT 
fusion power determinations. 



Principal Neutron Detection Systems on TFTR 

Energy Spatial Temporal 

System Calibration Discrim. Resolution Resolution 

Fission Detectors 

U-235 
2 @ 1.3 g in situ partial* no yes 
2 @ 0.01 g cross partial* no yes 

U-238 
1 @ l . 3 g cross partial* no yes 
1 @ 0.3 g cross partial* no yes 

Th-232 
1 @ 1.4 g cross partial* no yes 

Neutron Collimator 

10 vertical 
NE 451 (ZnS) in situ partial* chords yes 

10 vertical 
ZnS wafer cross partial* chords yes 

5 vertical 
He-4 proportional in situ yes chords yes 

Silicon Surface Barrier Diodes 

2 detectors cross yes no yes 

Activation System 

absolute via 
1 re-entrant station MCNP yes no no 

3 other stations cross yes no no 

* More sensitive to 14 MeV than to 2.5 MeV neutrons 
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TFTR NEUTRON DETECTION SYSTEMS 

0.01 g U-235 

Re-Entrant 
Irradiation End 

1.3 g U-235 

0.3 g U-238 
1.3gU-238 

# 1.3 g U-235 

1.4gTh-232 

Silicon 
SBO's 

0.01 g U-235 

10 NE451 and 10 ZhS Scintillators, 
5 He-4 Proportional Counters 
in Test Cell Basement 



FISSION DETECTORS 

Fission detectors have been used routinely for neutron source 
strength measurements on tokamaks for many years. The TFTR fission 
detectors can produce three electronic output signals: count rate mode, 
mean-square voltage (Campbell) mode, and current mode. In the case of 
the 1.3 g 2 3 5 U detectors, the directly calibrated count rate mode remains 
linear up to DT source strength Sn ~ 1014 n/s, where it is limited by pulse 
pileup. Electronic noise and linearity characteristics limit the range of 
validity of the Campbell mode to 1013 — 3 x 1017 n/s, while the range for the 
current mode is limited to 10 1 4 — 3 x 10 1 7 n/s. Corresponding ranges for 
the 0.01 g 2 3 5 U detectors are somewhat more than 100 times higher. By 
taking advantage of overlapping linear ranges of the various data channels 
during DT operation, the in situ calibrations of the 1.3 g 2 3 5 U detectors may 
be extended to Sn > 101 9 n/s. Although fission detectors do not distinguish 
between 2.5 MeV and 14.1 MeV neutrons, their counting efficiency is higher 
for the latter. Plasma conditions with negligible contributions of DD 
neutrons relative to DT neutrons were selected for use during cross-
calibrations. 

The stability of the fission detector electronics between February and 
December 1993 was examined by periodically recording count rates of 
neutrons from small sources placed immediately adjacent to the detectors 
and by comparing relative counting efficiencies of the various fission 
detector data channels during several months of deuterium operation 
leading up to the tritium experiments. In this way, the effect of electronic 
instability on cross-calibrations was shown to be less than 5%. 
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SPATIALLY RESOLVED MEASUREMENTS 

Spatial profiles of neutron emission from TFTR are monitored by 
arrays of detectors which view the plasma along ten vertical, collimated 
sight lines. The original configuration, which consisted of ten NE 451 (ZnS) 
scintillators, has been augmented by the addition of ten ZnS wafer 
scintillators developed in our laboratory and five 4He proportional counters. 
Both the NE 451 scintillators and the 4He counters were calibrated in situ 
for 14 MeV neutrons. The 4He detectors use pulse height discrimination to 
reject counts from 2.5 MeV neutrons. Pulse height spectra from the 
scintillators do not permit complete rejection of counts from DD neutrons, 
but the detectors are more sensitive to DT neutrons by a factor ranging 
from 2 to 10, depending upon discriminator level. 

For 14 MeV neutrons, the NE 451 detectors saturate for Sn > 3 x 1016 

n/s. The low-sensitivity ZnS wafer scintillator system was designed to 
operate up to Sn ~ 1019 n/s. By selecting appropriate plasma conditions, the 
ZnS wafer for each sight line may be cross-calibrated to the corresponding 
NE 451 detector. Similarly, after spatial integration, both the 4He and 
NE 451 detectors may be used to cross-calibrate other detectors, e.g., 
fission chambers or silicon surface barrier diodes. 
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SILICON DIODES AND ACTIVATION FOILS 

Two silicon surface barrier diodes have been installed near TFTR to 
enable unequivocal measurement of DT neutrons when DD neutrons are 
also present. One of the detectors is nearer to the plasma than the other, 
so that it has higher sensitivity and consequently lower statistical noise at 
small Sn, but it is also more susceptible to pulse pileup and radiation 
damage. Neither diode was in place during the February 1993 calibration. 

For plasmas without tritium injection, separate determinations of DD 
and DT neutrons may be obtained by combining DT neutron 
measurements from the surface barrier diodes with DD + DT 
measurements from fission chambers. 

A pneumatic transport system allows capsules containing various 
elemental foils to be irradiated at a number of stations near the TFTR 
vacuum vessel and then retrieved for analysis of the induced cctivation. 
One of the stations is a re-entrant irradiation end (REIE), for which most of 
the fluence consists of virgin neutrons. This minimizes errors in transport 
code modeling (MCNP) of the effect of scattered neutrons and allows a 
reliable determination of neutron yield for each plasma discharge. Since 
the neutron induced activation is intrinsically linear with respect to fluence, 
the yield may be compared to time-integrated signals from other neutron 
detectors to provide independent absolute cross-calibrations. 

11 



DD AND DT NEUTRONS FROM DD SHOT FOLLOWING DT SHOT 
1 r - ' 1 1 

TFTR SHOT 76187 
— 00 NEUTRONS 

— DT NEUTRONS 

TIME (S) 

10 18 

Q 
_ l 
UJ 
> 
Z o cr 

HI 

H 
Q 

10 17 

10 16 

10 15 

D-T NEUTRON YIELDS 

10 14 . 

10 14 10 15 10 16 

T 

i? : Fission i? 
• Activation 
< He-4 * 

• 
" 

c 
* 

• 
" 

r • i 

; S • 

* -: 

• •• : 

• * * , , . . . 
. . . 1 

10 17 10 18 

D-T NEUTRON YIELD FROM SURFACE BARRIER DIODE (n) 

12 



CROSS-CALIBRATION RESULTS * 

With three independently calibrated detector systems and an 
absolute determination of neutron yield from the activation foil system, 
there are a number of ways to cross-calibrate the less sensitive detectors. 
In order to obtain the most reliable values of Sn in high power deuterium-
tritium experiments, we perform an uncertainty-weighted average of cross-
calibrations, referred to a common data channel, namely, the current mode 
of a 0.01 g 2 3 5 U fission chamber. Except for cross-calibration from the 
activation foil system, intermediate steps are required to carry the in situ 
calibrations of 1993 into the range Sn > 1017 n/s. 

A figure below shows the maximum fusion power yet obtained in 
TFTR DT experiments, as determined by cross-calibration from the four 
systems just mentioned. Error bars represent overall uncertainties (one-
sigma) for each determination. The solid and dashed lines represent the 
mean and its ±7% error bars, respectively, obtained by weighting the 
individual measurements by the inverse-squares of their independent 
uncertainties. 

Comparisons of individual measurements of Sn from four detectors, 
cross-calibrated to the weighted mean, are also shown below. Each point 
represents a 0.1 second average of data from one of forty-one deuterium-
tritium plasmas during the period 9 December 1993 to 11 March 1994. The 
plotted points show ratios of Sn from two fission detectors (current mode) 
and a surface barrier diode to values obtained from the second SBD. The 
solid lines show the (± one-sigma) statistical variations to be expected from 
the reference SBD atone. 
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NEUTRON PROFILE RESULTS » 

Two examples of data from the ten ZnS wafer scintillators, cross-
calibrated to the NE 451 (ZnS) detectors in the multichannel neutron 
collimator, are shown below. In the first case, pure tritium gas was puffed 
into a DD plasma, and tritium transport coefficients were deduced from 
temporal and spatial evolution of the excess DT neutrons. 

The second figure below shows results from a recent high-p 
experiment. Values of Sn obtained by spatial integration of the neutron 
emission profile agree very well with measurements from a fission detector 
and a surface barrier diode. The neutron profile peaking parameter, i.e., 
the ratio of central to volume-average neutron emission, is also shown. The 
figure shows that both the global source strength and the profile peaking 
parameter increase until 2.95 s, when a central p-collapse occurs. 
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CONCLUSIONS 

TFTR has begun high power deuterium-tritium operation. A full 
complement of detection systems provides reliable and self-consistent 
measurements of DT neutron source strength and *ts spatial profile for all 
plasma conditions. The highest neutron source strength obtained to date is 
2.2 x 101 8 n/s. The estimated accuracy of the measurements, determined 
by an uncertainty-weighted mean of independently calibrated systems, is 
about ±7%. Statistical variations may be higher for individual 
measurements. 
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