Effects of measurement statistics on the detection of damage in the Alamosa Canyon Bridge

PDF Version Also Available for Download.

Description

This paper presents a comparison of the statistics on the measured model parameters of a bridge structure to the expected changes in those parameters caused by damage. It is then determined if the changes resulting from damage are statistically significant. This paper considers the most commonly used modal parameters for indication of damage: modal frequency, mode shape, and mode shape curvature. The approach is divided into two steps. First, the relative uncertainties (arising from random error sources) of the measured modal frequencies, mode shapes, and mode shape curvatures are determined by Monte Carlo analysis of the measured data. Based on ... continued below

Physical Description

13 p.

Creation Information

Doebling, S.W.; Farrar, C.R. & Goodman, R.S. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents a comparison of the statistics on the measured model parameters of a bridge structure to the expected changes in those parameters caused by damage. It is then determined if the changes resulting from damage are statistically significant. This paper considers the most commonly used modal parameters for indication of damage: modal frequency, mode shape, and mode shape curvature. The approach is divided into two steps. First, the relative uncertainties (arising from random error sources) of the measured modal frequencies, mode shapes, and mode shape curvatures are determined by Monte Carlo analysis of the measured data. Based on these uncertainties, 95% statistical confidence bounds are computed for these parameters. The second step is the determination of the measured change in these parameters resulting from structural damage. Changes which are outside the 95% bounds are considered to be statistically significant. It is proposed that this statistical significance can be used to selectively filter which modes are used for damage identification. The primary conclusion of the paper is that the selection of the appropriate parameters to use in the damage identification algorithm must take into account not only the sensitivity of the damage indicator to the structural deterioration, but also the uncertainty inherent in the measurement of the parameters used to compute the indicator.

Physical Description

13 p.

Notes

OSTI as DE97002447

Source

  • International modal analysis conference, Orlando, FL (United States), 3-6 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97002447
  • Report No.: LA-UR--96-3954
  • Report No.: CONF-970233--2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 432966
  • Archival Resource Key: ark:/67531/metadc688835

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 20, 2016, 1:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Doebling, S.W.; Farrar, C.R. & Goodman, R.S. Effects of measurement statistics on the detection of damage in the Alamosa Canyon Bridge, article, December 31, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc688835/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.