AGS-2000: Experiments for the 21. Century. Proceedings of the workshop held at Brookhaven National Laboratory, May 13--17, 1996

PDF Version Also Available for Download.

Description

The AGS has a vital and interesting potential for new research. The reasons for this are a fortunate concomitance of the energy chosen for the AGS and the steady stream of technological advances which have both increased the intensity and flexibility of the AGS beams, and the capability of detectors to use these new beam parameters. The physics potentials of the future AGS program can be roughly divided into three broad areas. (1) fundamental elementary particle studies (based on rare kaon decays, rare muon processes and searches for new particles); (2) non-perturbative QCD; and (3) heavy ion physics. The overriding ... continued below

Physical Description

103 p.

Creation Information

Littenberg, L. & Sandweiss, J. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The AGS has a vital and interesting potential for new research. The reasons for this are a fortunate concomitance of the energy chosen for the AGS and the steady stream of technological advances which have both increased the intensity and flexibility of the AGS beams, and the capability of detectors to use these new beam parameters. The physics potentials of the future AGS program can be roughly divided into three broad areas. (1) fundamental elementary particle studies (based on rare kaon decays, rare muon processes and searches for new particles); (2) non-perturbative QCD; and (3) heavy ion physics. The overriding considerations for the operation of the AGS in the next decade must, of course, be the interest and potential of the scientific program. However, once that has been established, there are other aspects of the AGS program which deserve mention. Although experiments at the AGS are of increasing sophistication, they are smaller, less expensive, and more quickly executed than experiments at newer, larger facilities. Finally, the authors note that since the AGS must be maintained as a viable accelerator to serve as an injector to RHIC, the cost of an AGS fixed target experiment need be only the incremental cost of the experiment itself along with some modest additional operating costs. This means that AGS fixed target experiments are substantially cheaper than they would have been before the RHIC era. The remainder of this document contains brief summaries of the experiments considered by the working groups in the AGS-2000 Workshop. These summaries expand on points discussed here.

Physical Description

103 p.

Notes

INIS; OSTI as DE97000043

Source

  • AGS-2000: experiments for the 21st century, Upton, NY (United States), 13-17 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97000043
  • Report No.: BNL--52512
  • Report No.: CONF-9605230--
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 383669
  • Archival Resource Key: ark:/67531/metadc688804

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 30, 2015, 3:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Littenberg, L. & Sandweiss, J. AGS-2000: Experiments for the 21. Century. Proceedings of the workshop held at Brookhaven National Laboratory, May 13--17, 1996, article, October 1, 1996; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc688804/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.