Compression ratio effect on methane HCCI combustion

PDF Version Also Available for Download.

Description

We have used the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to simulate HCCI (homogeneous charge compression ignition) combustion of methane-air mixtures. HCT is applied to explore the ignition timing, bum duration, NO<sub>x</sub> production, gross indicated efficiency and gross IMEP of a supercharged engine (3 atm. Intake pressure) with 14:1, 16:l and 18:1 compression ratios at 1200 rpm. HCT has been modified to incorporate the effect of heat transfer and to calculate the temperature that results from mixing the recycled exhaust with the fresh mixture. This study uses a single control volume reaction zone that varies as a function ... continued below

Physical Description

1.0 Megabytes

Creation Information

Aceves, S. M.; Pitz, W.; Smith, J. R. & Westbrook, C. September 29, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have used the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to simulate HCCI (homogeneous charge compression ignition) combustion of methane-air mixtures. HCT is applied to explore the ignition timing, bum duration, NO<sub>x</sub> production, gross indicated efficiency and gross IMEP of a supercharged engine (3 atm. Intake pressure) with 14:1, 16:l and 18:1 compression ratios at 1200 rpm. HCT has been modified to incorporate the effect of heat transfer and to calculate the temperature that results from mixing the recycled exhaust with the fresh mixture. This study uses a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by adjusting the intake equivalence ratio and the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both thermal energy and combustion product species. Adjustment of equivalence ratio and RGT is accomplished by varying the timing of the exhaust valve closure in either 2-stroke or 4-stroke engines. Inlet manifold temperature is held constant at 300 K. Results show that, for each compression ratio, there is a range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO<sub>x</sub> levels below 100 ppm. HCT results are also compared with a set of recent experimental data for natural gas.

Physical Description

1.0 Megabytes

Subjects

Keywords

STI Subject Categories

Source

  • American Society of Mechanical Engineers Internal Combustion Engine 1998 Fall Conference, Clymer, NY, September 26-30, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003421
  • Report No.: UCRL-JC-131908
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 3421
  • Archival Resource Key: ark:/67531/metadc688697

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 29, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 30, 2016, 7:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Aceves, S. M.; Pitz, W.; Smith, J. R. & Westbrook, C. Compression ratio effect on methane HCCI combustion, article, September 29, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc688697/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.