Predicting multidimensional annular flows with a locally based two-fluid model

PDF Version Also Available for Download.

Description

Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is ... continued below

Physical Description

10 p.

Creation Information

Antal, S.P. Edwards, D.P. & Strayer, T.D. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is presented. The purpose of this paper is to demonstrate a modeling approach for annular flows using a multifield, multidimensional two-fluid model and discuss the need for further work in this area.

Physical Description

10 p.

Notes

OSTI as DE99001454

Source

  • International conference on multi-phase flow, Lyon (France), Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001454
  • Report No.: KAPL-P--000064
  • Report No.: K--98030;CONF-980643--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 304003
  • Archival Resource Key: ark:/67531/metadc688685

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 6:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Antal, S.P. Edwards, D.P. & Strayer, T.D. Predicting multidimensional annular flows with a locally based two-fluid model, article, June 1, 1998; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc688685/: accessed May 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.