Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

PDF Version Also Available for Download.

Description

The stray light or �ghost� analysis of the National Ignition Facility�s (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts l(omega) to 3(omega) light, 3) focuses the light on the target, 4) separates a fraction of the 3(omega) beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1(omega) & 2(omega) light away from the target, 6) provides spatial beam smoothing, and 7) provides a debris ... continued below

Physical Description

1.4 Megabytes

Creation Information

Beer, G. K.; Hendrix, J. L.; Rowe, J. & Schweyen, J. June 26, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The stray light or �ghost� analysis of the National Ignition Facility�s (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts l(omega) to 3(omega) light, 3) focuses the light on the target, 4) separates a fraction of the 3(omega) beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1(omega) & 2(omega) light away from the target, 6) provides spatial beam smoothing, and 7) provides a debris barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4<sup>th</sup> order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm<sup>2</sup>. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.

Physical Description

1.4 Megabytes

Source

  • Third Annual International Conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF), Monterey, CA, June 7-12, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003540
  • Report No.: UCRL-JC-129754
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 3540
  • Archival Resource Key: ark:/67531/metadc688659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 26, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 6, 2016, 11:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Beer, G. K.; Hendrix, J. L.; Rowe, J. & Schweyen, J. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly, article, June 26, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc688659/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.