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Abstract 

Propagation of finite-amplitude magnetosonic waves in a collisionless plasma containing 

two ion species is studied with a one-dimensional, fully electromagnetic code based on a 

three-fluid model. It is found that perpendicular magnetosonic waves are damped in a two- 

ion-species plasma; a magnetosonic pulse accelerates heavy ions in the direction parallel to 

the wave front, which results in the excitation of a longer wavelength perturbation behind 

the pulse. The damping due to the energy transfer from the original pulse to the longer 

wavelength perturbation occurs even if the plasma is collisionless and the pulse amplitude is 

small. The theoretically obtained damping rate is in agreement with the simulation result. 
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Recently it has been recognized that linear and nonlinear magnetosonic waves in a multi- 

ion-species plasma behave quite differently from those in a single-ion-species plasma.l4 First 

of all, the magnetosonic wave is divided into two modes in a two-ion-species plasma. The 

lower frequency mode has an ion-ion hybrid resonance frequency w-re4 The higher frequency 

mode has a finite cut-off frequency wM. (The dispersion curves and mathematical expressions 

can be found in Ref. 1.) If we denote the cyclotron frequency of the lighter ions by R, (the 

subscript a refers to the lighter ion species) and that of heavier ions by S2b ( b  designating the 

heavier ions), then these frequencies are ordered as follows: 

The phase velocity of the low frequency mode is about the Alfven speed, VA,  in the long- 

wavelength region. On the other hand, for the wavenumber range 

the frequencies of the high frequency mode are given by 

where Vh is defined as 

Here, Wpj is the plasma frequency for particle species j .  The speed vh is slightly higher than 

the Alfvdn speed V A ,  and in a single-ion-species plasma it reduces to VA. The dispersion 

curves for both the low- and high-frequency modes bend sharply at the wavenumber IC,, 

where kc is defined as IC, = w-,/vA. Even though the high-frequency mode has a finite 

cut-off frequency, both the low- and high-frequency modes have been shown to be described 

by KdV equati0ns.l 
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In the following we will discuss the high-frequency mode; the terminology “magnetosonic 

wave” will designate this mode when it is used for two-ion-species plasmas. Indeed, its 

frequency range is much wider than that of the low-frequency mode, and it is believed 

that in large-amplitude waves, such as shock waves, the high-frequency mode plays a more 

important role than the low-frequency mode.2 

In a collisionless, single-ion-species plasma, magnetosonic waves propagating perpendic- 

ular to a magnetic field do not suffer Landau damping. Thus they can propagate without 

damping. (Large-amplitude waves can be damped, because they accelerate some fraction 

of  ion^^-.^) In this Letter, however, we will show, using a one-dimensional electromagnetic 

simulation code based on a three-fluid model, that even in a collisionless plasma, perpen- 

dicular magnetosonic waves are damped in a two-ion-species plasma. Even when the wave 

amplitude is small, heavy ions are accelerated in the direction parallel to the wave front by 

the transverse electric field; this generates a longer wavelength perturbation and causes the 

original pulse to be damped. 

We consider waves propagating in the x-direction (ala9 = d/dz = 0) in a magnetic 

field B that points in the z-direction. To study the space-time evolution of finite amplitude 

waves, we carry out numerical simulations of the three-fluid model, employing the pseudo 

spectral methodlo: 

where the subscript j refers to the ion species (species a or b) or the electrons (j =e); mj 

is the mass, q j  the charge, nj the number density, and V j  the velocity. We assume periodic 
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boundary conditions. As the initial wave profiles, we use the solitary wave solutions obtained 

from the KdV equation for the high-frequency model and observe their evolution. 

We simulate a hydrogen-helium plasma. Thus we have chosen the mass and charge ratios 

between heavy and light ions as malm, = 4 and qb/qa = 2, respectively. The density ratio 

is nb/n, = 0.1, as in space plasmas. The mass and charge ratios between light ions and 

electrons are mu/me = 1000 and qu/qe = -1. The magnetic field strength is IfleI/wpe = 0.5, 

SO that C/VA = 68.3 and VA/Vh = 0.967. 

In Fig. 1 we show profiles of the magnetic field at various times for a solitary wave with 

the initial amplitude B,(O) = 0.1, where B, is the amplitude (or the maximum value) of the 

perturbed magnetic field normalized to the external field, Bo. Figure 2 shows the profiles of 

ub, the y component of the velocity of the heavy ions. Although the magnetic field nearly 

keeps its initial profile, the heavy-ion velocity ub, which is quite smal l  at t = 0, increases 

with time in the pulse region; in this case it reaches its steady state value, vb N O.ohh, at 

about wWt = 1500. That is, even in the fluid model, the heavy ions are accelerated in the 

direction parallel to the wave front. (Here, initially we imposed a small-amplitude solitary 

wave. If the original pulse is a large-amplitude shock-like wave, the acceleration would be 

much ~tronger.~) The heavy-ion motion across the magnetic field produces a long-wavelength 

perturbation behind the pulse region. This is the high-frequency mode, with the wavelength 

X N 27r/kc: more precisely, X = 1.2(27r/kc) (and hence w = 1.053w-,+) for this case. 

Because of the excitation of the long-wavelength perturbation, the amplitude of the main 

pulse gradually decreases. Figure 3 shows the time variation of the amplitude of the magnetic 

field; the straight line represents the theoretical prediction, which will be described below. 

The energy of the original pulse is gradually transferred to the long-wavelength pertur- 

bation through the acceleration of the heavy ion. Thus, the damping rate of the original 

4 



main pulse can be obtained from the following equation: 

where E, is the wave energy of the original pulse, v~bym is the maximum speed that the heavy 

ions gain from the original pulse, w(w)v&., is the wave-energy density of the long-wavelength 

perturbation with amplitude vw and frequency w,  and Mvh is the propagation speed of the 

original pulse ( M  is the Mach number). The right-hand side of Eq. (9) is the energy that 

the long-wavelength perturbation gains per unit time. 

Because the quantity JBdz is conserved in this system, we have the relation J ( B  - 

= ,fB2dz + const. Thus the total energy of the original pulse citn be given by 

Substituting the soliton solution into this equation, we can obtain the specific form for E, 

of the original pulse as a function of the normalized amplitude B,. The wave energy E, is 

proportional to B:l2, because the wave-energy density is proportional to B: and the soliton 

width is proportional B;'12. 

Also, from the theory of heavy-ion acceleration: we know that the maximum speed vbym 

where the coefficient gvB is defined as 

Here d is an order-unity quantity, and q is of the order of me/ma; for their precise expres- 

sions, see Ref. 3. Equation (11) is valid when the original wave is a soliton-like pulse. From 

the linear theory for the wave, we have w(w) given as 
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We therefore obtain a differential equation for the amplitude of the magnetic field 

where 7 is 

If we neglect the second term on the right-hand side of Eq. (14), we have 

Bn(t) = Bn(0)[1 - 7Bn(0)-'/"/2]2. 

When the second term in the square bracket on the right-hand side of Eq. (16) is smaller 

than unity, this equation can be approximated as 

B&) = B,(O)[l - 7Bn(0)-1/2t]. 

The damping rate, ~ d ,  is thus given by 

Note that it decreases with increasing initial amplitude B,(O). (The soliton theory for this 

mode is valid for amplitudes (n~, lmi)~/~ << B, << 1 . l ~ ~ )  If we retain the second term on the 

right-hand side of Eq. (14), we have 

where C is given by C = ar~tan[B,(O)/Z]~/~. When t and B, are small, Eq. (19) reduces to 

Eq. (16). 

From the simulation results in Fig. 2, we find the wavenumber of the long-wavelength 

perturbation, IC = ICJ1.2, and hence the frequency, w = 1.053~~. Substituting this in 

Eq. (15), we obtain the damping rate for the case when B, = 0.1. As Fig. 3 shows, the 

theoretical damping rate for the original pulse agrees well with the simulation result. 
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In summary, by using a one-dimensional, fully electromagnetic simulation code based 

on the three-fluid model, we have studied the propagation of magnetosonic waves in a two- 

ion-species plasma. As a magnetosonic pulse propagates, it accelerates the heavy ions in 

the direction parallel to the wave front. The cross-field heavy-ion motion then causes the 

generation of a long-wavelength perturbation with wavenumber IC N kc (frequency near the 

cut-off frequency! w N w+~) .  Therefore, the original pulse is gradually damped. By equating 

the energy loss rate of the original pulse to the energy gain rate of the long-wavelength 

perturbation, we theoretically obtained the damping rate of the original pulse, which was 

found to be in good agreement with the simulation result. 
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FIGURE CAPTIONS 

FIG. 1. Magnetic field profiles of a pulse at various times. The initial amplitude is B,(O) = 

0.1. 

FIG. 2. Profiles of the heavy ion velocity v b  at various times. 

FIG. 3. Time variation of the amplitude of the original pulse. The dots are simulation 

results. The straight line shows the theoretical prediction. 

9 



L . 
28800 

19200 

0 960G 

. 
0 

0 

- 
I 

I . 
0 

L 

0 apet  = 0: 

(x-vh t )/@/ape) 

L I I *  I 1  * ' I  . . 1 1 ~ . . ' * ' '  

0 200 400 600 8001000 

Fig. 1 



.. 

- 
I 800 
I E abet  = 01 - A 200 400 600 8001000 

. . .  1 . . ' " * ' '  * . I . * * '  

Fig.2 



0.1 00 
Bn 

0.096 

0.092 

0.088 

F ig.3 

' I  


