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ABSTRACT 

Modern software development methods combined 
with key generalizations of standard computational 
algorithms enable the development of a new class of 
electromagnetic modeling tools. This paper describes 
current and anticipated capabilities of a frequency 
domain modeling code, EIGER, which has an 
extremely wide range of applicability. In addition, 
software implementation methods and high 
performance computing issues are discussed. 

INTRODUCTION 

Recent advances in software development methods 
have given birth to a new era for generating scientific 
analysis tools. The object oriented (00) design 
methods that have been widely used in other software 
disciplines are the subject of extensive research by the 
scientific community. This represents a fundamental 
shift from the familiar procedural methods that previous 
scientific codes employ. The crux issues for object 
oriented development entail identifying and abstracting 
commonality between apparently dissimilar algorithms 

. and methods. This commonality is collected into a class 
of objects that share dam attributes and methods. This is 
in contrast to procedural methods where specialized 
algorithms are implemented for each specific analysis 
case. There are often fundamental trade-offs between 
the generality and flexibility associated with the 00 
methods and the efficiency associated with the standard 
procedural methods. These trade-offs will continue to 
be the subject of research by the community for years to 
come. 

In addition to the computer science aspects 
associated with 00 development, a number of 
generalizations and unifications of concepts used in 
standard computational algorithms have been 
developed over the last few years. For example, unified 
representations for higher order curvilinear elements of 

various shapes and dimensionality have appeared, as 
well as similar forms for bases representing the vector 
fields defined on these elements. These bases have 
robust computational properties in both integral and 
partial differential equation formulations. Unified 
representations for mixed potential forms of Green’s 
functions also exist, as do standard methods for 
handling their singular kernels. Combining these 
compact representations with object oriented software 
development methods means that it is now possible to 
develop very flexible general-purpose software for 
electromagnetic modeling. This paper describes one 
such computational environment currently under 
development. The code, EIGER (Electromagnetic 
Interactions GEneRalized), will handle a variety of 
elements---line segments, triangles, quadrilaterals, 
tetrahedrals, prisms, and bricks---in both integral and 
partial differential equation formulations. The 
following sections describe different modeling features, 
which have been or will be included. 

GEOMETRY REPRESENTATION 

The EIGER physics kernel assumes that a 
geometrical description of a problem to be modeled is 
created by appropriate CAD mesh-generating software. 
The geometries from the mesh generator are combined 
with simulation specific information to produce an 
EIGER input tile by a pre-processor that has data 
structures that are parallel to the physics kernel. The 
pre-processor can currently read a dozen different input 
formats for computation. The code suite uses a common 
representation for elements independent of 
dimensionality (2D or 3D) and order (linear, quadratic, 
etc.). 

Convenient representations for the line segment, 
triangle, quadrilateral, tetrahedral, prism, and brick 
elements used in EIGER employ the Lagrange 
interpolation scheme 
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r = CI;.Rit P, 5) (1) 
H(J,M)=-jwF(M)--VY’(M) 

where i = (i,, i2,. . ., i,,) is a multi-index designating 
both the order and locations of interpolation points on 
curvilinear elements, and {= ({t, r2,..., 5”) is a 
multi-vector of normalized coordinates defined on an 
element, one for each sub-boundary (endpoint, edge, or 
face of a line segment, surface, or volume element, 
respectively) comprising an element r . Ri (p, c) is a 
Lagrange interpolation polynomial of order p and has 
the separable form 

(2) 

where Ri(p, 5) is the Silvester-Lagrange interpolating 
polynomial’*‘. All additional geometrical quantities 
(e.g., element jacobian, edge vectors Z+ and coordinate 
gradient vectors Vc) may be obtained from the so- 
called unitary basis vectors Ii = i310gi associated with 
the independent coordinates 4’. The detailed geometry 
of a 3D-prism element, depicting these quantities, is 
shown in Figure 1. 

Careful examination of the prism element, along 
with the other elements of interest, clearly identifies 
information that all elements must have knowledge of. 
In EIGER, this information is cast into an element class 
(a fundamental class for geometry) which contains 
some of the following: 
l An element type 
l An element order 
l A set of physical points that define the element 
l The number of basis functions on the element 
l Pointers to specific basis sets 
l Additional attributes (possibly thickness or radius) 

_., 
OPERATORS 

The current development activity grew from 
research in integral equation methods. For dynamic 

: problems, it is assumed that the unknowns associated 
with any element may be either equivalent electric or 
magnetic currents---or a combination of the two. 
Similarly, boundary conditions may involve either the 
electric field, the magnetic field, or both. Therefore 
electric and magnetic field operators of the following 
type are needed: - 

E(J,M) =-@A(J) -V@(J) 

AxF(M) (3) 
& 

+&d(J) 
& 

These operators are expressed in terms of the 
electric and magnetic scalar potentials .(I? and Y and the 
magnetic and electric vector poteti@ls’A &a F due to 
equivalent sources J and M, respectively.,The potential 
formulation minimizes the order of singularities that 
appear in the kernels of the associated integro- 
differential operators. In order to completely determine 
the potentials, appropriate Green’s functions, as 
discussed below, must also be specified. 

In the current development both integral and partial 
differential equation formulations as well as hybrid 
formulations employing both types of operators are 
under way. Finite element method s directly attempt to 
solve partial differential equation formulations such as 
the vector Helmholtz equations 

Vx(,ur-‘~VxE)-k,2~,~E = 

- jo.p, J - V x (p,-’ -M ) 

or 
(5) 

Vx(E,-‘.VxH)-ko2p;H = 

- jcq.u$f -V x (E,-’ - J) (6) 

The forcing functions are the source currents J or M, 
which may be actual or equivalent sources. 
Alternatively, the excitation may be due to sources 
outside a region’s boundary. Both the differential and 
integral equation operators are enforced in a weak sense 
in order to minimize differentiability requirements on 
basis and testing functions. 

Initially, EIGER was focused on frequency domain 
problems. However, the object-oriented structure of 
EIGER has facilitated extensions of the code to employ 
static operators. The unknown electric and magnetic 
currents (J and iW) from the dynamic case are replaced 
by potentials and gradients of potentials respectively (@ 
and &W&r) otherwise the code structure remains 
identical. The code presently has the capability of 
modeling perfect electric conductors, perfect magnetic 
conductors, and dielectric materials both in 2 and 3 
dimensions for static operators. Also, a hybrid FEM 
integral equation is available in 2d and 3d. The EIGER 
pre-processor is being modified to output the 
associations needed for static analysis so once a 
structure is meshed it may be analyzed with either static 
or dynamic excitations. 

and 
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BASES 

To compute the numerical solution of a problem and 
numerically enforce the chosen operator on the 
geometry, an appropriate set of expansion and testing 
functions is needed. The numerical advantages of using 
the Nedelec curl-conforming bases in the Helmholtz 
operators and the divergence-conforming bases in the 
integral operators are now well established 3*4. Nedelec 
bases not only easily accommodate discontinuities in 
material properties, but also eliminate spurious modes 
using a minimum number of degrees of freedom per 
element for a given order of accuracy. Recently, high 
order interpolatory forms of the Nedelec bases have 
been constructed which are convenient as ‘universal 
bases ’ The unnormalized form of the divergence- 
conforming form of these bases of order p is 

where As (5) is the usual (zeroth order) divergence- 
conforming basis associated with sub-boundary /3 of an 
element and Rr(p,{) is a modified Silvester-Lagrange 
polynomial similar to equation 2 but involving 
interpolation points shifted away from the element’s 
boundaries. 

Unnormalized curl-conforming bases have the form 

for a set of bases associated with edge ,8of a two- 
dimensional element and 

for a set associated with edges formed by the 
intersections of faces y and p of a three-dimensional 
element. 4 and .n, are curl-conforming zeroth order 
bases associated with the elements. 

When singular quantities such as the fields or 
currents near edges of conductors or dielectrics are 
modeled, higher order bases do not provide the 
expected increase in accuracy. To model such cases 
accurately, singular higher order bases are needed5. 
Such bases, as well as special basis functions for 
modeling junctions between surfaces and wires, are 
incorporated into EIGER6. 

GREEN’S FUNCTIONS 

For efficient integral equation solution capabilities, 
a number of Green’s function capabilities are desired. 
Both two- and three-dimensional Green’s functions and 
their gradients are available in EIGER. A wide variety 
of problem types may be handled if multi-layered 
media Green’s functions for both periodic and non- 
periodic media are available. The mixed potential 
integral equation (MPIE) formulation 7 for such 
problems is particularly convenient in practical 
computations. A typical potential in (3), say the 
magnetic vector potential, is expressed as an integral 
over sources J on a domain D as 

A=j-DGA(r,r’)-J(r’)dD (10) 

The Green’s potential dyad, &, may in turn be written 
as 

GA(r,r’) = IG,(r,r’) + xT,Go(r,q’) 
i 

+ AGA(r,r’) (11) 

where Z is the identity dyad, Go is the background 
homogeneous medium Green’s function for non- 
periodic media, c is a dyadic reflection coefficient 
representing a quasi-static image located at rt’, and 
AC*&/) is a relatively smooth integral contribution of 
Sommerfeld type. The latter integral is efficiently 
evaluated using a combination of complex path 
deformation and the method of averages*. For periodic 
media, Go is the homogeneous media periodic Green’s 
function, an infinite series that may be efficiently 1 
evaluated using the Ewald methodg. In this case AG* is 
also a rapidly converging series. For complete 
generality, it is possible to separately model the 
environment on either side of a surface element using 
any Green’s function available to the code. 

Other important Green’s functions for applications 
are those that may be constructed using reflection or 
rotational symmetries. These symmetry operators may 
be constructed by appropriately reflecting or rotating 
source elements and endowing them with appropriate 
signs or phase factors. 

ELEMENT MATRIX CONSTRUCTION 

The first step in obtaining a matrix approximation to 
an operator equation is to form the element matrix. This 
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involves all interactions between basis functions 
defined on each pair of elements in the integral 
equation case, or within each individual element in the 
differential equation case. This difference between the 
two cases accounting for the sparcity of the system 
matrix associated with the FEM approach. Assuming 
that the testing functions are the same as the bases, 
typical entries in the element matrices for integral 
equations are 

(12) 

where 

used when the electric field due to electric current 
sources is required. Its dual, the operator 
corresponding to the magnetic field due to magnetic 
current sources, used in aperture or dielectric problems, 
has the form 

(13) 

where Crj’ and rijyp are also defined by duality. Similar 
representations exist corresponding to electric fields 
due to magnetic currents and their dual, magnetic fields 
due to electric currents. 

In three dimensions, the element matrix entries for 
the electric field form of the Helmholtz operator (5) are 

(14) 

where 

A corresponding dual form exists for the magnetic form 
of the Helmholtz operatoq. 

The generalized form of the inner product notation 
used above allows for the appearance of dyadic 
quantities in the inner products; when these dyads are 
also potential quantities, an extra integration over 
source coordinates is also implied. The similarity in 
form of the element matrices for both integral and 
partial differential equations allows similar algorithms 

to be used. The construction of these element matrices 
is essentially the core of any computational engine, and 
nearly all of the possible combinations above have been 
implemented in EIGER. ALkey feature in evaluating the 
singular integrals which appear is the existence of 
closed formulas for the qu&s+tatic contribution of 
various potentials for constant and linear source 
densities on polygonal and polyhedral domains lo. 

QUADRATURE 

A variety of quadrature schemes must be available 
for use in a general-purpose code. These include: 

. One-dimensional Gaussian quadrature rules 
for various orders and types of singular 
integrands. 

. Various order Gaussian quadrature rules for 
triangles; for quadrilaterals, mappings can be 
made to forms such that Cartesian product 
quadrature rules can be constructed. 

. Various order Gaussian quadrature rules for 
tetrahedrons; for prism and bricks, mappings 
may be made to forms for which Cartesian 
product rules may be used, 

. Various special purpose schemes such as 
adaptive integration. 

Tables corresponding to various quadrature schemes 
are stored as a module in EIGER and pointers are used 
to select the appropriate coefficients and weights for 
element matrix evaluation. 

EXCITATIONS 

Problems such as the determination of dispersion on 
guided wave structures, cutoff frequencies for ’ 
waveguides, or resonant frequencies of cavities do not 
require excitation sources. If the system matrix for 
these source-free problems is linear with respect to the 
quantity of interest, then it may be determined by 
eigenvalue solution; if not, it is determined by 
searching for roots of the determinantal equation. 

Radiation, scattering, and penetration problems are 
not source-free and may be distinguished primarily by 
the location of excitation. Antenna or radiation 
problems generally are excited by near field sources 
such as delta-gap or frill sources. The weak forms used 
in EIGER permit these quantities to be expressed 
simply as voltages across terminal pairs. In scattering 
and penetration problems plane wave excitations are 
needed. An important point to observe is that once a 
variety of Green’s functions are available for 
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constructing element matrices, these can also be used to 
construct excitation by near field sources. Equally 
important in reducing post-processing software is using 
reciprocity to determine the fields radiated by 
equivalent currents. That is, the field at a point in space 
may be determined using the matrix excitation vector 
for a point source located at that point. 

BOUNDARY CONDITIONS 

EIGER can handle a variety of boundary conditions 
and is constructed so that new ones may be added as 
needed. As currently implemented, the electric field 
(EFIE), magnetic Geld (MFIE), or combined field 
(CFIE) integral equations may be used on conducting 
surfaces. For aperture problems, the aperture electric 
field may be determined in terms of equivalent 
magnetic currents. The continuity conditions of electric 
and magnetic fields are used at dielectric interfaces to 
determine equivalent electric and magnetic currents 
there. Equivalent currents may be assumed to exist on 
either side of a surface element. Thus for open 
conductors, it is possible to close the conductor by 
aperture surfaces and determine not only the aperture 
fields, but also the separate surface currents on the 
exterior and interior conducting surfaces. 

Both lumped and distributed impedance loading of 
elements is permitted in EIGER through a simple 
impedance boundary condition, and extensions to more 
general boundary conditions, such as shells and 
coatings, are currently in progress. Also, the variety of 
boundary conditions for static solutions was discussed 
earlier. 

GLOBAL MATRIX ASSEMBLER 

Clearly, elements of the element matrix correspond 
to pairs of global unknown (degree of freedom) 
indices, which in turn correspond to storage locations in 
the system matrix. It is the job of the matrix assembler 
to determine how element matrix contributions are to be 
stored in the global system matrix. A number of further 
index mappings may be needed in addition to those just 
described, however. For example, an additional index 
mapping may be needed to employ a sparse matrix 
storage scheme for matrices generated by partial 
differential equation formulations. Additional mappings 
may be needed to store elements in certain blocks for 
partitioned matrix solutions or for mapping to different 
multi-processors. Other mappings may be needed to 
account for an object’s symmetry, or to utilize special 
formulations at low frequencies to eliminate matrix 
instabilities. Many of these mappings are currently 
tivailable in EIGER. 

LINEAR SYSTEM SOLVERS 

EIGER currently uses standard LTNPACK routines 
for the direct solution of the dense, complex matrices 
arising in integral equation procedures on a serial 
platform. A complex-symmetric matrix solution 
algorithm may be chosen if appropriate. A conjugate- 
gradient solution algorithm is also available and more 
sophisticated iterative solvers are to be added. Because 
many robust algorithms are widely available, and 
because machine-specific solvers may be needed in 
multi-processor environments, concentration has not 
focused on development of solvers for EIGER. 

It is anticipated that sparse matrix and eigenvalue 
solvers will be needed for partial differential equation 
formulations. Special purpose solvers may also be 
needed for the block sparse matrices arising in hybrid 
formulations. 

HPC IMPLEMENTATION 

During the design of the EIGER software 
architecture many different issues were addressed. One 
of these concerned the computer platforms that the code 
would be well tuned for. A decision was made early to 
not limit target platforms. This was addressed by 
identifying the flexibility needed for different 
architectures (single processor, multi-processor, shared 
memory, distributed memory, etc.) and addressing these 
issues during initial design. This yields a package that is 
not encumbered by legacy software issues when trying 
to port to different platforms. 

The initial port to parallel platforms was for 
distributed memory (MlMD) architectures (DEC Alpha 
clusters and IBM SP2). For these machines, the linear 
algebra solvers usually dictate the manner in which the 
algorithm is to be distributed. The primary concerns 
here are bandwidth and latency issues. 

Since the solution of the present set of operators 
yields a linear system of equations, a given problem is 
partitioned based upon the matrix equations (not based 
upon the geometry directly). The present parallel 
solution algorithms employ a block matrix partitioning 
scheme, which is then used to distribute the 
electromagnetic calculations at run time. 

Future HPC considerations will address shared 
memory (threaded) algorithms and hybrid parallel 
algorithms. 
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SUMMARY 

It is possible to develop an efficient general-purpose 
electromagnetic solver primarily because of a 
combination of relatively recent computational and 
technological developments: 

Development of a convenient and unified 
indexing and representation scheme for 
interpolatory basis functions of arbitrary order 
on any of the canonical element shapes. 
Development of robust representations and 
means for computing Green’s functions for 
both periodic and nonperiodic, multi-layered 
media. 
Development of a unified approach for 
handling Green’s functions singularities. 
Ability of advanced languages to create 
complex data types like vectors, dyads, and 
even more complex objects, as well as to 
create operators, such as dot and cross 
products, which can operate on them. 
Capability of advanced languages to 
dynamically dimension arrays, which allows, 
for example, efficient handling of arrays of 
variable size when selecting or mixing various 
element shapes, orders of geometrical or 
unknown representation, orders of quadrature, 
or boundary conditions. 
Organization of the computational paradigm 
into an object-oriented approach by abstracting 
algorithms, encapsulating data, giving 
inheritance to data objects, and developing 
code in modular form. 

Careful abstraction and generalization of each step 
in the numerical algorithm yields a code, which is 
maintained easily and allows for future expansion. 
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COORDINATE CONSTRAINTS- 

6-3 + t-5 =l 
independent dependent 
coordinate coordinate 

coordinate multivector of point P: 

multi-index of point P: i = (i,,i,,i,;i&) = (1,0,1;2,0) 

Figure 1. Index and coordinate system notation for the prism element of order q=2. 
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