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Abstract 

A compact and stable 20-beam injector was built for launching laser light into fibers for Fabry Perot 
velocity measurements of shock-driven surfaces. The fiber injector uses commercial mounts on mini-rails. 
Dielectric-coated beamsplitters provide accurate amplitude division. Minimal adjustments for stable 
operation are permitted by the use of a real-time video-viewer. The video system includes a non-linear 
camera for CW alignment and a linearized camera with a frame grabber for pulsed measurement and 
analysis. All 20-injection points are displayed on a single monitor. Optical requirements are given for 
image relay and magnification. Stimulated Brillouin scattering limitations on high-power are quantified. 

Keywords: Laser Doppler velocimetry, long-pulse YAG laser, amplitude division, thin-film 
beamsplitters, fiber-injection viewer, Stimulated Brillouin Scattering (SBS). 

1. Laser Doppler Velocimetry 

In laser-Doppler velocimetry, laser light suffers a frequency change as it reflects or scatters from a 
moving surface. Very large frequency shifts can be quantified using diffraction gratings or even prisms. 
Low frequency-shifts can be detected with heterodyne techniques and displayed on a spectrum analyzer. 
Velocities using scattered light from rapidly moving bodies moving in the range of l-1 0 mm/ys are best 
analyzed using interferometric methods.’ The figure below shows a schematic of a velocimeter using a 
Fabry Perot interferometer. 

I Injection Fiber 
a 

-.L,?V 

Interferometer 

Figure 1: Laser-Doppler velocimeter schematic. Numerous beam collecting and shaping 
optics are not shown. 

Light from a frequency-doubled pulsed-laser goes to an injection system where it is divided and 
injected into each of several different fibers. Fiber light then moves to an explosively driven surface. 
Diffusely reflected and Doppler shifted light from the surface is captured by a signal fiber and transported 
to the Fabry Perot interferometer. The Fabry converts frequency shifted light into a time-dependent 
interference pattern that is temporality moved across photographic film by a streaking camera so that the 



position of the interference fringes can be recorded. The output is a record of instantaneous surface-velocity 
versus time. Only the fiber injection portions of the velocimeter will be described in detail. 

2. Laser 

In our current generation of velocimeters, visible light is created by a long-pulse YAG laser system. 
This laser system uses a ring-based seed-laser with an extremely narrow linewidth, and four stages of 
amplification. It includes a Pockels cell for pulse-shape control, three Faraday isolators to keep stray light 
out ofthe seed laser, and three pinhole-filters for beam quality. The Joule-sized infrared output is converted 
to 532 nm light with 10% efficiency by a KTP doubling crystal. The pulse width is adjustable from 40 to-80 
us. The laser system also contains a low-power continuous wave 532 nm laser for safely performing 
alignments. Laser output can be decreased with a polarization rotator coupled with a thin-film plate 
polarizer. 

3. Injection Invariant 
A key parameter in determining the nature of light injected into fibers is the optical invariant, which is 

given by2 

@&=4MZh, 
n 

Eq. 1 

where 0 is the full-angle far-field beam divergence, Do is the waist-diameter and h is the wavelength. The 
parameter M is equal to unity for a laser operating in the fundamental Gaussian mode. Higher-order modes 
produce waist spot-sizes that are M times larger than do those of a fundamental Gaussian. Similarly, 
divergence measured far from the waist is larger than that of a Gaussian by the factor M. It is useful to 
lump the effect of all higher-order beam modes in the single parameter M. 

For efficiency, light injected into optical fibers must be smaller than the fiber core and its angle of 
convergence must be smaller than the fiber Numerical Aperture, or NA. If the spot size is not smaller than 
the fiber core, then excess light is lost and it may even bum the fiber. Small-diameter fibers are desirable in 
Doppler-velocimetry because they can allow more accurate measurement. Low NA fibers are also desirable 
in velocimetry because they increase the measurement range while minimizing probe dimensions3. High 
values of the product of fiber NA and core-size are not useful in high-resolution Fabry Perot interferometry. 

In our original laser specification, the M2 was to be so large that light would not launch efficiently into 
small, low NA fibers. To work around this, a wavefront divider was designed for fiber injection. In 
wavefront division, an enlarged laser beam is separated into smaller-sized segments using mirrors as 
dividers. Wavefront division can result in beams with a smaller optical invariant. In amplitude-division, 
portions of the entire beam wavefront are sampled using partially reflective beamsplitters. With amplitude 
division, the optical invariant is maintained for each of the beamlets. The long-pulsed lasers finally 
manufactured had near-Gaussian beam quality and so the amplitude-divider described here was built. 

4. Fiber Injectors 

The splitter and lens system injects light into twenty fibers. Fiber cores are usually 100 ,um and the 
numerical apertures are 0.07 or 0.11. Dielectric coated beamsplitters were used with reflective values of 20, 
25,33,50 and 100 %, as shown below. 



Figure 2: 20-Beam Injector 

The splitters were designed for equal light of 5% to each fiber. Actual values are shown below. 

Leg#4 4.9 4.4 4.3 4.5 4.2 

Leg#3 4.9 4.5 4.4 5.0 4.9 

Leg#2 5.2 4.8 4.9 5.5 5.2 

Leg#l 4.8 4.4 4.6 5.1 4.9 

Table 1: Measured percentage of light delivered to each fiber of the 20-beam injector. The 
mean injection percentage is 4.8, the standard deviation is 0.35 and the range is f 0.65. 

The injection lenses are 50 mm focal-length achromats. Input beam diameters at the lenses are about 3 mm 
Lens and splitter mounts and the lenses are catalogue items. The fiber holders and various mechanical 
interfaces were custom made. Most of the injector is mounted on mini-rails, The number of adjustments 
was minimized for system stability. Beams on the fiber faces are stable to S!OO pradians for periods of 
weeks for room temperature changes below 2 “C. Alignment between our present laser and injection 
platforms undergoes a thermal drift for larger temperature changes. 



5. Fiber Viewer 

If an injected beam drifts off its fiber face, power is lost and the fiber may be damaged This section 
describes an optical viewer for precisely verifying injection alignment. 

The Fresnel-reflected light from the fiber input face may go back through the injecting lens and reform 
into a magnified image of the injection spot. This image can be detected and viewed by placing a video 
camera in the plane where the magnified image occurs. Separating the reverse-traveling beam from the 
incident-laser light is done with an angled beamsplitter. 

The fiber core can also be viewed, which provides a reference for centering the injected spot. Light - 
injected into the fiber travels its length and a portion Fresnel reflects off the output end, retraverses the 
fiber, and exits the original injection end. If this light re-enters the injection lens, it forms a magnified 
image of the core. Light reflected from both ends of the fiber form images at the same location, as shown in 
Fig. 3 Both images can be amazingly crisp and laden with detail, although they are made of speckles. 

Figure 3: Video image of fiber reflections. The larger circle is the core image and the 
smaller off-center spot is the direct reflection from the input face. 

A difficulty with fiber-face imaging is in obtaining the desired magnification when the beam waist is 
placed at the fiber face. If the injection-lens to fiber-face spacing is set so that the image magnification m 
is a particular value, then using the equation 

-+-=L 1 1 
Ra Sa Fa 

Eq. 2 

yields the result that the lens-to-fiber spacing R, need be given by 

&=(I-I)Fa, 
m 

Eq. 3 

where Fa is the injector-lens focal length and Sa is the lens-to-image spacing Here, both R, and Sa are 
taken to be positive for real images. From eq. 2, setting a 50 mm lens for a factor of 25 magnification 
requires that R, be 52 mm. Magnifying a 100 pm fiber core by 25 times projects a conveniently sized 2.5 
mm image onto a l/2” format Charge Coupled Device (CCD). 



The complication comes in that the minimum spot size of the incident beam may not occur at the fiber 
face when Ra is set for the desired magnification. If the incident beam is 532 nm and it originates from a 
two-millimeter waist diameter located three meters upstream of the injection lens, then the focused beam 
has a waist some 50 2 mm downstream of the injection lens. Setting the fiber at Ra = 50.2 yields 
m = -250 and this places the image 12 m beyond the lens. If instead the fiber were set to make Ra = 52 
for an m = -25 magnification, then the injected beam diameter at the fiber face would quadruple from its 
minimum value of 17 pm. These values may be verified using the Gaussian formulas quoted in the 
appendix. 

This example illustrates that it may not be possible to simultaneously image the fiber face with an - 
optimal magnification while minimizing the injected-beam waist. A solution is to use a reduction lens 
between the injection lens and the camera as shown in Fig. 4. 
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Figure 4: Fiber viewer showing incident laser beam reflecting from fiber, passing through 
injector lens, splitter and reduction lens, and then forming an image on the video CCD. 

The distance d between the injection lens and the reduction lens can be calculated with the following 
expression. 

Eq. 4 

where T is the pathlength between the fiber and the desired CCD location, R, is the required fiber to 
injection-lens spacing, and m is the desired overall magnification. The optimal value for R, is determined 
by measuring the waist location and beamsize upstream of the injector, and then calculating R, with the 
Gaussian beam formulas listed in the Appendix. This procedure places the incident-beam waist on the fiber 
face. 



The spacing Sb between the reduction lens and the image (located at the CCD) is calculated with the 
following equation. 

Sb=T-d-I& Eq. 5 

Finally, the focal length of the reduction lens Fb may be calculated with this expression: 

Fb = dSb 
d+mFL+Sb’ 

Eq. 6 

Convenient values for T and m are first chosen, then the spacing d and focal length Fb are calculated 
with eqs. 4-6. Alternately, T can be selected as a dependent variable by solving eq. 4 for T in terms of d . 

As a numerical example, values of Fa = 50, R, = 50.2, m = -25 and T = 2000 lead to Fb = 13 10 and 
d=770. 

It should be noted that if the fiber core is not perfectly parallel to the connector body, or if the fiber 
face is not perfectly perpendicular to the injected beam, then the directly reflected spot will move off to the 
side of light emanating from the core for non-image locations. Hence viewing of beams not located at the 
true core-image location can give an erroneous indication of spot centering. 

Even though all the fiber images can appear on a single video display, there is a large difference 
between intensities. The light reflected from the front face is brighter than light reflected from the output 
face if the injected beam is smaller than the core. There is a difference in light levels between different 
fibers due to splitter efficiency. Tables 2 and 3 illustrate the fiber-to-fiber variance. 

Leg#4 1.7 1.7 1.7 1.7 1.7 

Leg#3 1.7 1.7 1.7 1.7 1.7 

Leg#2 1.7 1.7 1.7 1.7 1.7 

Leg#l 15 15 15 15 15 

Table 2: Percentage of spectrally reflected s-polarized light reaching the camera. The total 
s-light from a single fiber is taken as 100%. The splitter s-reflectivities are 20,25,33,50 and 
100%. 

Leg#4 2.7 0.68 0.36 0.23 0.18 

Leg#3 0.68 0.17 0.09 0.06 0.05 

Leg#2 0.36 0.09 0.05 0.03 0.02. 

Leg# 1 61 15 8.2 5.2 4.1 

Table 3: Percentage of diffusely reflected p-polarized light reaching the camera. The total p- 
light from a single fiber is taken as 100%. The corresponding splitter p-reflectivities are 4.3, 
5.8,9.6,20 and 100%. 

The specular light reflected from the injection surface is polarized, but light reflected from the far end 
of the fiber is usually depolarized. While return light from all the injection fibers can reach the same video 
camera, means must be provided to block all but one fiber reflection at a time. 



6. Stimulated Brillouin Scattering 

Once the Brillouin power threshold is reached, coherent light injected into a fiber generates a forward- 
traveling sound wave that in turn reflects incident light. Increasing the incident power beyond this threshold 
does not increase the throughput, as the “excess” power is returned out the injection end of the fiber. The 
Stimulated Brillouin Scattering (SBS) power threshold PO is given by 

p = 21A o- 
gLeff ’ 

Eq. 7 

where A is the fiber-core area, Lefr is the effective fiber length, the number 21 is an arbitrary constant used 
to designate large gain (some authors use the value 30 instead), and g is a material-dependent constant 
called the Brillouin gain. The effective fiber length Lerr can be calculated from the following formula: 

L e tf = 1 - exp(-@ , 
a 

Eq. 8 

where a is the fiber’s absorption coefficient and L is its length. 

For polarization-preserving communication fiber and wavelength, g is approximately equal to 5x1 O-” 
m/W. The SBS threshold increases by about a factor of 3/2 for unpolarized light ( g=3.3x10-“).J’5 Earlier 
authors used a factor of 2 instead of 312. Measurements at 532 nm with our 31 m multi-mode 50 and 100 
pm fibers yield g=3.8x10M” m/W with a 10% uncertainty. Although our laser output is polarized, injected 
light is depolarized after a meter or so of transmission through multimode fiber. The SBS reflected-light 
oscillations of Fig. 5 show a 300 ns period, which is twice the light transit time in the silica fiber. 
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Figure 5: Light reflected by SBS. 
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8. Appendix 

For a Gaussian beam, the distance zz between an injection lens and its waist is given by the following: 

zz = F, + 
(ZI - Fa)Fa’ 

(ZI - F,)’ + ZR,~ ’ 
Eq. 9 

where ZI is the distance from the upstream waist to the injection lens and ZRI is the Rayleigh range of the 
incoming beam.6 

2 ZRF$& Eq. 10 

For minimum injected beam size, R, is set equal to 22. The diameter Do2 of the downstream waist is 
connected to the upstream waist diameter DOI by the following: 

Do2=**m Eq. 11 

9. References 

’ C. F. McMillan, et al., “Velocimetry of fast surfaces using Fabry-Perot interferometry”, Rev. Sci. Instrum. 
29, pp. I-20 (1988). 
’ A. E. Siegman and S. W. Townsend, “Output Beam Propagation and Beam Quality from a Multimode 
Statle-Cavity Laser”, IEEE Journal of Quantum Electronics 29, pp. 12 12-12 17 (1993); T. F. Johnston, Jr., 
;‘M concept characterizes beam quality”, Laser Focus World, May (1990). 

D. R. Goosman, “Formulas for Fabry-Perot velocimeter performance using both stripe and 
multifrequency techniques”, 30, pp. 3907-3923 (1991). 
4 Govind Agrawal in Nonlinear Fiber Optics, chapter 9, Second edition, Academic Press (1995). 
5 Walter Koechner, Solid-State Laser Engineering, chapter 10, Fourth Edition, Springer (1996). 
’ S. S. Charschan, Lasers in Industry, p. 141, Van Nostrand Reinhold (1972). 



T
echnical Inform

ation D
epartm

ent  • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia  94551


