2. ECN Category
(mark one)
Direct Revision [X]
Supplemental □
Change ECN □
Temporary □
Standby □
Supersedure □
Cancel/Void □

3. Originator's Name, Organization, MSIN, and Telephone No.
R. D. SCHREIBER, 71520, R2-12, 373-5589

4. Date
1-25-95

5. Project Title/No./Work Order No.
TANK 241-C-105 TANK CHARACTERIZATION PLAN

241-C

7. Approval Designator
Q

8. Document Numbers Changed by this ECN
(WHCS-SD-WM-TP-259, REV. 0)

9. Related ECN No(s).
N/A

10. Related PO No.
N/A

11a. Modification Work
[X] Yes (fill out Blk. 11b)
[] No (NA Blks. 11b, 11c, 11d)

11b. Work Package No.
N/A

11c. Modification Work Complete
N/A

11d. Restored to Original Condition (Temp. or Standby ECN only)
N/A

Cog. Engineer Signature & Date

12. Description of Change
Removed Pretreatment analyses from Rev. 0.

13a. Justification Criteria Change
[] As-Found
[X] Facilitate Constr.

13b. Justification Details
The Pretreatment Program requested that the analyses be deleted from the Tank Characterization Plan.

14. Distribution (include name, MSIN, and no. of copies)
See attached Distribution Sheet

OFFICIAL RELEASE BY WHC
DATE MAR 08 1995

A-7900-013-2 (06/94) GEF095
OFFSITE

U. S. Department of Energy - Headquarters
Office of Environmental Restoration and
Waste Management EM-563
12800 Middlebrook Road
Germantown, MD 20874

K. T. Lang
J. A. Poppiti

Los Alamos Technical Associates
750 Swift, Suite 14
Richland, WA 99352

A. T. Dicenso
C. J. Lindquist
T. T. Tran
G. P. Westleigh
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ENGINEERING CHANGE NOTICE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes or No</td>
<td>Additional Savings $</td>
<td>Improvement $</td>
</tr>
<tr>
<td>[] Yes</td>
<td>[] $</td>
<td>[] $</td>
</tr>
<tr>
<td>[X] No</td>
<td>[] $</td>
<td>[] $</td>
</tr>
</tbody>
</table>

18. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Additional Savings $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic/Stress Analysis</td>
<td>[]</td>
</tr>
<tr>
<td>Stress/Design Report</td>
<td>[]</td>
</tr>
<tr>
<td>Interface Control Drawing</td>
<td>[]</td>
</tr>
<tr>
<td>Calibration Procedure</td>
<td>[]</td>
</tr>
<tr>
<td>Installation Procedure</td>
<td>[]</td>
</tr>
<tr>
<td>Maintenance Procedure</td>
<td>[]</td>
</tr>
<tr>
<td>Engineering Procedure</td>
<td>[]</td>
</tr>
<tr>
<td>Operating Instruction</td>
<td>[]</td>
</tr>
<tr>
<td>Operating Procedure</td>
<td>[]</td>
</tr>
<tr>
<td>Operational Safety Requirement</td>
<td>[]</td>
</tr>
<tr>
<td>IEDD Drawing</td>
<td>[]</td>
</tr>
<tr>
<td>Cell Arrangement Drawing</td>
<td>[]</td>
</tr>
<tr>
<td>Essential Material Specification</td>
<td>[]</td>
</tr>
<tr>
<td>Fac. Proc. Smp. Schedule</td>
<td>[]</td>
</tr>
<tr>
<td>Inspection Plan</td>
<td>[]</td>
</tr>
<tr>
<td>Inventory Adjustment Request</td>
<td>[]</td>
</tr>
</tbody>
</table>

19. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.

<table>
<thead>
<tr>
<th>Document Number/Revision</th>
<th>Document Number/Revision</th>
<th>Document Number Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Approvals

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cog. Mgr. S.J. EBERLEIN</td>
<td>3/7/95</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>QA K.K. CUTSFORTH</td>
<td>3/8/95</td>
<td>QA</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Environ.</td>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Other J. T. SLANKAS</td>
<td>3/7/95</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>J.G. KRISTOFZKI</td>
<td>3/7/95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.G. HOKHNEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.W. HALL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF ENERGY

Signature or a Control Number that tracks the Approval Signature

ADDITIONAL
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>WHC-SD-WM-TP-259, REV 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>TANK 241-C-105 TANK CHARACTERIZATION PLAN</td>
</tr>
<tr>
<td>Release Date:</td>
<td>3/8/95</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

<table>
<thead>
<tr>
<th>WHC Information Release Administration Specialist:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature] Kara M. Broz</td>
</tr>
</tbody>
</table>

March 8, 1995

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650
2. **Title**
TANK 241-C-105 TANK CHARACTERIZATION PLAN

3. **Number**
WHC-SD-WM-TP-259

4. **Rev No.**
1

5. **Key Words**
CHARACTERIZATION, SAFETY SCREENING, QUALITY CONTROL, SINGLE-SHELL TANK, SAMPLING, ANALYSIS, TANK CHARACTERIZATION PLAN, PRETREATMENT

6. **Author**
Name: R. D. SCHREIBER
Signature:

7. **Abstract**
This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL-325 Analytical-Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-105.

8. **RELEASE STAMP**
OFFICIAL RELEASE
BY WHC
DATE: MAR 08 1995

A-6400-073 (08/94) WEF124
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WHC-SD-WM-TP-259, REV 0, EDT 609591, October 28, 1994</td>
<td></td>
</tr>
<tr>
<td>1 RS</td>
<td>Revised in its entirety, ECN 617833</td>
<td></td>
</tr>
</tbody>
</table>
Tank 241-C-105
Tank Characterization Plan

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Prepared for the U.S. Department of Energy
Office of Environmental Restoration
and Waste Management

by
Los Alamos Technical Associates
8633 Gage Boulevard
Kennewick, WA 99336
LIST OF TABLES

Table 1: Historical Record of Waste in Tank C-105 3
Table 2: Chemical Results for Tank C-105 Sludge Waste 4
Table 3: Radiochemical Results for Tank C-105 Waste 4
Table 4: C-105 Chemical, Radiological, and Physical Analytical Requirements ... 15

LIST OF FIGURES

Figure 1: Laboratory Flow Chart A .. 9
Figure 2: Laboratory Flow Chart B ... 10
Figure 3: Laboratory Flow Chart C ... 11

LIST OF ABBREVIATIONS

ACL Analytical Chemistry Laboratory
B B-plant high level waste
BL B-plant low level waste
BNW Battelle Northwest Laboratory waste
C-105 tank 241-C-105
CPLX complexant concentrate
CW coating waste
DOE Department of Energy
DQO data quality objective
DSC differential scanning calorimetry
DST double-shell tank
EB evaporator bottoms
HHF hydrostatic head fluid
IC ion chromatography
ICP inductively coupled plasma - atomic emission spectroscopy
IX ion exchange waste
LW Laboratory Waste
MW metal waste
N N-Reactor waste
NCPLX non-complexed waste
OWW organic wash waste
P PUREX waste
PL PUREX low level waste
PNL Battelle Pacific Northwest Laboratory
PUREX Plutonium-Uranium Extraction plant
QA Quality Assurance
QC Quality Control
R REDOX waste
RSN REDOX supernatant
SST single-shell tank
TBP tributyl phosphate
TCP tank characterization plan
TGA thermogravimetric analysis
TOC total organic carbon
TPA Tri-Party Agreement
TWRS Tank Waste Remediation System
WHC Westinghouse Hanford Company
1.0 SPECIFIC TANK CHARACTERIZATION OBJECTIVES

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-44-00 has been made, which states that "A Tank Characterization Plan (TCP) will also be developed for each double shell tank (DST) and Single-shell tank (SST) using the DQO process...Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information." This document satisfies that requirement for the tank 241-C-105 (C-105) fiscal year 1995 sampling activity.

1.1 RELEVANT SAFETY ISSUES

There are four Watch List tank classifications (ferrocyanide, organic, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues (Babad 1992). Tank C-105 was on the High Heat Load Watch List. However, it is presently classified as a non-Watch List low heat load tank with <11.7 KW (<40,000 Btu/hr) and is monitored weekly. This Tank Characterization Plan shall identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information.

1.1.1 Pretreatment, and Safety Screening Data Quality Objectives

The sampling and analytical needs associated with the pretreatment program, as well as the safety screening of all tanks, have been identified through the Data Quality Objective (DQO) process. Additional data needs associated with tank C-105 may be identified in subsequent DQO efforts, which may then be incorporated into future sampling events.

Pertinent documents to this effort include the following:

(1) **Tank Safety Screening Data Quality Objective** (Babad and Redus 1994), which describes the sampling and analytical requirements for screening all waste tanks for unidentified safety issues. The criteria for placing a tank on a particular Watch List are enumerated in that document.

(2) **Interim Data Quality Objectives for Waste Pretreatment and Vitrification** (Kupfer et al. 1994) which describes the sampling and analytical requirements to support the TWRS technical strategy by identifying the chemical and physical composition of the waste in the tank. In addition, the DQO works to guide development efforts to define waste pretreatment processes, which will in turn define high-level and low-level waste feed to vitrification processes. This DQO, at the request of the Pretreatment
1.1.2 Data Quality Objectives Integration

Both the safety screening and pretreatment DQO efforts require a minimum of two core samples to be taken from risers separated radially to the maximum extent possible by the existing installed risers. Tank C-105 contains a large amount of waste that shall be sampled for safety screening and pretreatment purposes using the push mode core sampling method.

The safety screening DQO requires tank samples to be analyzed in half-segments. However, the pretreatment DQO requires analyses to be run on solid and liquid core composites.

It should be noted that for this Tank Characterization Plan, the Pretreatment Program has requested that only a sample for archive and a sample for process development be obtained. For further information, refer to Section 6.1.

2.0 TANK, WASTE, AND SAMPLING INFORMATION

This section summarizes some of the available information for tank C-105. Discussions of the fill history and recent sampling events for the tank, as well as general information about the tank, are included.

2.1 AGE AND PROCESS HISTORY

Tank C-105 is a SST constructed between 1943 and 1944, and has a capacity of 2,014,000 liters (530,000 gallons). The following information was obtained from the document, History and Status of Tanks 241-C-105 and 241-C-106 (Walker 1977).

Tank C-105 was placed in service during the first quarter of 1947. The first waste it received was metal waste (MW) from the Bismuth Phosphate Process. The tank was the second in a cascade which included tanks C-104 and C-106. MW from the extraction process contained all of the uranium, 90 percent of the original fission product activity, and approximately 1 percent of the plutonium. This waste was brought to the neutral point with 50 percent caustic and then treated with an excess of sodium carbonate. The procedure yielded almost completely soluble waste at a minimum total volume. The MW remained in the tank until the third quarter of 1953 when a sluice mining program for recovery of the uranium was started. Virtually no solids were left after the last transfer of the slurry.

The tank was again filled to capacity during July and August 1954 with Tributyl Phosphate (TBP) waste. This material was generated during the processing of MW to recover uranium. The treatment involved addition of potassium ferrocyanide \((K_4Fe[CN]_6) \) to act as a scavenging agent for cesium.
April 1956, the tank was pumped to a 300,200 liter (79,000 gallon) heel and the record states a sludge volume of 57,000 liters (15,000 gallons). This was the first reported solids measurement.

In August 1956 tank C-105 received Purex Coating Waste (CW) enroute to the 241-BY Tank Farm and to other tanks within the 241-C Farm. The tank remained full and static from mid 1960 to the second quarter 1963 when it was pumped to a 475,000 liter (125,000 gallon) heel; there was no record of a sludge measurement. Then, during the last quarter of 1963, the first transfer of Purex Neutralized High Level Waste was received from tank A-102. The ending volume was 2,022,000 liters (532,000 gallons), and a solids volume of 414,000 liters (109,000 gallons) was recorded. A significant liquid level decrease of 91 cm (36 inches) was recorded during the static period between the time of fill and the fourth quarter of 1967. Although "steaming" was indicated as the cause of this waste loss, no documentation of other decrease studies or temperature data is available. A 414,000 liter (109,000 gallon) sludge volume was first recorded in 1965 (two years after the Purex High Level Waste transfer).

From 1967 until February 1977, tank C-105 served as a receiver for Purex Supernatant Waste (PSN) and Purex Sludge Wash Waste (PSS) from the 241-A and 241-AX tank farms and also from tanks C-103 and C-106. Although administrative controls were applied to prevent/minimize it, some A and AX solids were believed to have been transported to C-105. This material was then pumped to the 221-B building for cesium recovery processing (Walker 1977).

The tank was declared inactive in November 1980. Table 1 summarizes the fill history from when tank C-105 was first placed on active status to the present time.

Table 1: Historical Record of Waste in Tank C-105

<table>
<thead>
<tr>
<th>Qtr:Year</th>
<th>Waste Type and Description</th>
<th>Total Vol. (kgal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:1953</td>
<td>MW removal in progress</td>
<td>48</td>
</tr>
<tr>
<td>4:1954</td>
<td>Received TBP waste</td>
<td>546</td>
</tr>
<tr>
<td>3:1979-4:1980</td>
<td>CPLX, declared inactive</td>
<td>172</td>
</tr>
<tr>
<td>1:1994</td>
<td>NCPLX</td>
<td>150</td>
</tr>
</tbody>
</table>

Anderson 1990 and Walker 1977
2.2 HISTORICAL SAMPLING EVENTS

In February 1991, analyses of archived samples were performed. The results of the analyses for tank C-105 can be found in Tables 2 and 3. The sample date for chemical and radiochemical analyses were April 1, 1990 and April 11, 1986, respectively.

Table 2: Chemical Results for Tank C-105 Sludge Waste

<table>
<thead>
<tr>
<th>Analyte</th>
<th>µg/g</th>
<th>Analyte</th>
<th>µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>170</td>
<td>Na</td>
<td>64400</td>
</tr>
<tr>
<td>Al</td>
<td>246,000</td>
<td>Nd</td>
<td>210</td>
</tr>
<tr>
<td>As</td>
<td>320</td>
<td>Ni</td>
<td>5900</td>
</tr>
<tr>
<td>B</td>
<td>300</td>
<td>Pb</td>
<td>1130</td>
</tr>
<tr>
<td>Ba</td>
<td>150</td>
<td>Sb</td>
<td>2500</td>
</tr>
<tr>
<td>Ca</td>
<td>1600</td>
<td>Se</td>
<td>1000</td>
</tr>
<tr>
<td>Cd</td>
<td>80</td>
<td>Si</td>
<td>10800</td>
</tr>
<tr>
<td>Ce</td>
<td>270</td>
<td>Sr</td>
<td>160</td>
</tr>
<tr>
<td>Cr</td>
<td>1400</td>
<td>Ti</td>
<td>230</td>
</tr>
<tr>
<td>Cu</td>
<td>160</td>
<td>Tl</td>
<td>1600</td>
</tr>
<tr>
<td>Fe</td>
<td>15300</td>
<td>U</td>
<td>10500</td>
</tr>
<tr>
<td>Mg</td>
<td>330</td>
<td>V</td>
<td>60</td>
</tr>
<tr>
<td>Mn</td>
<td>7120</td>
<td>Zr</td>
<td>710</td>
</tr>
</tbody>
</table>

*Thomas 1991

Table 3: Radiochemical Results for Tank C-105 Waste

<table>
<thead>
<tr>
<th>Analyte (sludge)</th>
<th>µCi/g</th>
<th>Analyte (Drainable Liquid)</th>
<th>µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C</td>
<td>8. E-04</td>
<td>14C</td>
<td>2. E-03</td>
</tr>
<tr>
<td>60Co</td>
<td>7. E-01</td>
<td>60Co</td>
<td>1.7E-02</td>
</tr>
<tr>
<td>$^{89/90}$Sr</td>
<td>8. E+02</td>
<td>$^{89/90}$Sr</td>
<td>5. E+00</td>
</tr>
<tr>
<td>99Tc</td>
<td>1. E-01</td>
<td>99Tc</td>
<td>2. E-01</td>
</tr>
<tr>
<td>129I</td>
<td>1. E-04</td>
<td>129I</td>
<td>2.7E-04</td>
</tr>
<tr>
<td>137Cs</td>
<td>1. E+02</td>
<td>137Cs</td>
<td>4. E+02</td>
</tr>
<tr>
<td>$^{239/240}$Pu</td>
<td>2. E+00</td>
<td>U</td>
<td>2. E-03</td>
</tr>
<tr>
<td>241Am</td>
<td>1. E+00</td>
<td>241Am</td>
<td>5.7E-03</td>
</tr>
</tbody>
</table>

*Thomas 1991
2.3 SAMPLING INFORMATION

Tank C-105 is currently scheduled to be sampled by the push mode core sampling method. Samples shall be taken from risers 2 and 8. If, for some reason, a different riser must be used for sampling, this change must satisfy the intent of the applicable DQOs, must be authorized by the sampling cognizant engineer, and must be documented in either a permanent data sheet or directly into the work package. For detailed information regarding the sampling activities, refer to work package ES-94-01147/w. This document contains the chain of custody records for this sampling event. In addition, refer to Plant Operating Procedure TO-020-455.

Current records indicate that there are 570,000 liters (150,000 gal) of non-complex waste in tank C-105. The approximate layer volume, as derived from Los Alamos National Laboratories Waste Status and Transaction Record Summary, is 57,000 liters (15,000 gal) of uranium recovery (UR) waste, 307,800 liters (81,000 gal) of cladding waste-redox (CWR), and 205,200 liters (54,000 gal) of unknown waste (ICF Kaiser Hanford Company 1994). The most current waste level is approximately 113 cm (44.5 inches). Tank C-105 is considered sound with respect to tank integrity and is partially isolated. (Hanlon 1994).

Based on the information above, each core is expected to consist of three segments each. The first segment from each core is expected to contain 16.5 cm (6.5 in) of waste material, while the final two segments should contain 58 cm (19 in) of waste each. The objective is to reach the bottom of the tank; therefore, depending on the accuracy of this information, it may be necessary to take more or less segments.

Hydrostatic head fluid (HHF) with lithium bromide (LiBr) as a tracer shall be used to aid in the collection of the core samples. An HHF blank shall be prepared as part of the sampling procedure and shall consist of a container filled with HHF (with LiBr tracer) from the same batch of HHF used during the push mode core sampling. It shall be analyzed for Li (and Br, if the Li notification limit is exceeded) in order to determine the concentration of the tracer at the time the core was taken. Only one HHF blank per tank is required. This blank is required in addition to the field/trip blank (sampler filled with water). For specific information concerning sample handling, custody and transport, refer to the quality assurance/quality control requirements in Section 4.2.

3.0 SAMPLE EXTRUSION AND BREAKDOWN INSTRUCTIONS

3.1 TANK-SPECIFIC ANALYTICAL PROCEDURES

A flowchart depicting the general sample breakdown and analysis scheme is presented in Figures 1, 2, and 3. These steps are described in detail to provide the hot cell and laboratory chemists with guidance for the breakdown of the segments and may be altered as appropriate by the performing laboratory. Several analyses listed in Table 4 require a 45 day reporting time, as noted. The 45 day reporting format, Format 111, is explained in Section 7.2.3.

Any decisions, observations, or deviations made to this work plan or during the sample breakdown shall be documented in writing (with appropriate justification) in the data report. The reporting formats for analyses are contained in Table 4.
Step 1 Receive push mode core samples at the laboratory in accordance with approved procedures.

Step 2 Conduct the following on the material from each extruded segment:
 - Perform a visual examination of the segment(s)
 - Record observations. This may include a sketch of the extruded core sample in addition to written documentation of pertinent descriptive information such as color, texture, homogeneity, and consistency.
 - Take color photographs and/or a videotape to visually document the extruded core segments.

Step 3 Separate any drainable liquid from the solids. Measure and record the volume. Retain drainable liquids for further processing.

Step 4 Is the segment 100% drainable liquid?
 Yes: Proceed to Step 15
 No: Proceed to Step 5

SOLIDS PATH

Step 5 Divide each extruded core segment into two equal segment subsamples.

Step 6 Homogenize each subsample using the appropriate approved procedure.

Step 7 Will a homogenization test be performed?
 Yes: Proceed to Step 8
 No: Proceed to Step 9

 NOTE: One subsample per core, at a minimum, should be used for the homogenization test. Additional tests may be performed at the laboratory's discretion.

Step 8 Conduct the homogenization test by taking a 1 to 2 gram aliquot from widely separated locations of the homogenized subsample. Conduct the homogenization test in accordance with Bell (1993).

Step 9 Collect sufficient aliquots from each homogenized subsample to perform the appropriate preparations and analyses listed in Table 4 in duplicate.

 NOTE: If there is an insufficient amount of sample available in any subsample to perform all required analyses on the half segment, notify the Characterization Program within one business day and follow the prioritization of analyses given in Section 3.3.

Step 10 Remove at least 20 mL and up to 40 mL of each homogenized subsample for the archive sample (Bratzel 1994).
WHC-SD-WM-TP-259, REV 1

Step 11 Combine portions of each half segment proportional to the sludge recovery of each segment to build a core composite. This composite must be large enough to provide 125 grams of material for process development work, plus 100 mL of material for archive.

Step 12 Remove 100 mL of the solid composite as the Pretreatment solid composite archive (Bratzel 1994).

Step 13 Remove 125 grams of the solid composite for process development work (see Section 6.2).

LIQUIDS PATH

Step 14 Closely inspect the liquid sample for the presence and approximate volume of any potential organic layers. Does the sample contain any immiscible (potential organic) layers?

Yes: Proceed to Step 15A
No: Proceed to Step 16

Step 15A Report any visually observed immiscible (potential organic) layer immediately by the early notification system.

Step 15B Separate and retain the potential organic layer for possible future analysis.

NOTE: Steps 16 through 22 shall be performed on the remaining (probable aqueous) liquid layer only.

Step 16 Filter the remaining liquid sample through a 0.45 micron filter.

Step 17 Is there greater than 1 gram of solid on the filter?

Yes: Proceed to Step 18
No: Proceed to Step 19

Step 18 Archive the solids for possible future analysis (Bratzel 1994).

Step 19 Remove sufficient aliquots from the segment-level liquid sample to perform the appropriate analyses listed in Table 4 in duplicate.

Step 20 Archive at least 20 mL and up to 40 mL of the segment-level drainable liquid as the segment level liquid archive (Bratzel 1994).

Step 21 Combine portions of each segment-level liquid sample to build a liquid composite.

Step 22 Remove 100 mL of the liquid composite as the Pretreatment liquid composite archive (Bratzel 1994).
PRIMARY ANALYSIS PATH

Step 23 Perform primary analyses as listed in Table 4.
Step 24 Compare the primary analysis data with notification limits.
Step 25A Do the results exceed the notification limits (Table 4)?
 Yes: If the results exceed the notification limits. Proceed to Step 25B.
 No: If results do not exceed the notification limits, proceed to Step 28.
Step 25B Report results exceeding the notification limits using Format I reporting deliverable requirements as listed in Section 7.2.

SECONDARY ANALYSIS PATH

Step 26 Perform secondary analyses according to Table 4.
Step 27A Do the secondary analyses exceed the notification limits?
 Yes: Proceed to Step 27B
 No: Proceed to Step 28
Step 27B Report results exceeding the notification limits using Format I reporting deliverable requirements as listed in Section 7.2.
Step 28 Report results as listed in Section 7.
Figure 1: Laboratory Flow Chart A

Step 1
Receive core samples.

Step 2
Conduct visual examination.

Step 3
Separate any drainable liquid.

Step 4
Is segment 100% drainable liquid?

YES
Step 14

NO

SOLIDS PATH

Step 5
Divide extruded core segments into two equal subsegments.

Step 6
Homogenize each subsample.

Step 7
Will a homogenization test be performed?

YES

Step 8
Conduct homogenization test.

NO

Step 9
Collect aliquots from subsample to perform analyses listed in Table 4.

Step 10
Remove material for subsample archive.

Step 11
Combine portions of half segments to build composite of the core.

Step 12
Remove 100 mL of material for Pretreatment archive.

Step 13
Remove 125 g of material for process development work.

Go to Step 14
Figure 2: Laboratory Flow Chart B

LIQUIDS PATH

Step 14
Does the liquid sample contain potential organic layers?

YES
Step 15A
Report immediately using early notification system.

NO
Step 16
Filter the remaining liquid sample through 0.45μ filter.

Step 17
Does the filter contain >1g solids?

YES
Step 18
Archive solids obtained from Step 16.

NO
Step 19
Remove aliquots from subsegment level liquids to perform analyses listed in Table 4.

Step 20
Archive subsegment-level drainable liquid.

Step 21
Combine segment-level liquid to build composite of the core.

Step 22
Remove 100 mL of material for Pretreatment archive.

Step 23

Go to
Step 21

Go to
Step 19

Go to
Step 16
Figure 3: Laboratory Flow Chart C

ANALYSES PATH

Step 23
Perform primary analyses as listed in Table 3.

Step 24
Compare primary analysis data with notification limits.

Step 25A
Do primary analysis results exceed notification limits?

NO
Go to Step 28

YES

Step 25B
Report primary analysis results using Format I deliverables.

Step 26
Perform secondary analyses as listed on Table 4.

Step 27A
Do secondary analyses exceed notification limits?

YES

Step 27B
Report secondary analyses results using Format I deliverables.

NO

Step 28
Report results as listed in Section 7
3.2 INSUFFICIENT SEGMENT RECOVERY

If the amount of material recovered from the core samples taken from tank C-105 is insufficient to perform the analyses requested and permit a minimum 20 gram archive per segment, the laboratory project coordinator or project manager shall notify the Tank Cognizant Engineer and the manager of Analytical Services, Program Management and Integration within one working day. A prioritization of the analyses requested in this document is given in Section 3.3. Any analyses prescribed by this document, but not performed, shall be identified in the appropriate data report, with justification for non-performance.

3.3 PRIORITIZATION OF REQUESTED ANALYSES

The analyses to be performed for the safety screening and pretreatment DQOs have been prioritized below. Confirmation of prioritization levels or revision of sample breakdown procedures may be provided based upon the sample recovery, readily observable physical property distinctions within the sample, and the requested sample breakdown procedures provided in section 3.1.

PRIORITY LEVEL 1

The DSC, TGA, Total Alpha (when necessary), and Li analyses shall be performed.

PRIORITY LEVEL 2

Secondaries for safety screening (TOC, RSST, bromide, cyanide, plutonium 239/240, iron, manganese and total uranium) shall be performed.
4.0 SPECIFIC ANALYTE, QUALITY CONTROL, AND DATA CRITERIA

4.1 SPECIFIC METHODS AND ANALYSES

The analyses in Table 4 to be performed on the tank C-105 core samples are based on the Safety Screening DQO referenced in Section 1.1.2. The laboratory procedure numbers, which shall be used for the analyses, are included in the table.

4.2 QUALITY ASSURANCE/QUALITY CONTROL

4.2.1 Laboratory Operations

The 222-S Laboratory has a quality assurance program plan (Meznarich 1994) and a quality assurance project plan (Taylor 1993) that shall provide the primary direction for the quality assurance/quality control of analyzing the waste tank core samples at the 222-S Laboratory. If the analyses are performed at the 325 Analytical Chemistry Laboratory (ACL), the analysis shall be guided by the 325 Quality Assurance Plan (Kuhl-Klinger 1994). Additionally, the Hanford Analytical Services Quality Assurance Plan (DOE 1994), when implemented (August 31, 1995), shall be used as quality assurance guidance.

Method specific quality control such as calibrations and blanks are also found in the analytical procedures. Sample quality control (duplicates, spikes, standards) are identified in Table 4. If no criteria are provided in Table 4, the performing laboratory shall perform to its quality assurance plan(s).

4.2.2 Sample Collection

Two core samples, with an expected three segments each, are to be taken and shipped to the performing laboratory by Sampling Operations in accordance with Work Package ES94-01147/W. That work package shall also initiate the chain-of-custody for the samples. Approved plant operating procedure TO-020-455 and procedure TO-080-090 ("Load/Transport Sample Cask[s]") are to be used during the sampling event. Samples shall be identified by a unique number before being shipped to the performing laboratory. The sampling team is responsible for documenting any problems and procedural changes affecting the validity of the sample in a field notebook. Sampling Operations shall enter this information in the comment section of the chain-of-custody form for addition to the data reports.

Sampling Operations should transport each segment collected to the performing laboratory within 1 working day of removing the segment from the tank, but must transport each segment within 3 calendar days. The field blank and HHF blanks shall each count as a segment. Sampling Operations is responsible for verbally notifying the laboratory (373-2435 for 222-S Laboratory; 376-2639 for 325 ACL) at least 24 hours in advance of an expected shipment. If samples are to be delivered to 325 ACL after 3:00 pm, the laboratory shall be notified at least 72 hours in advance of actual sample shipment so that proper shift operations can be planned.
4.2.3 Sample Custody

The chain-of-custody form is initiated by the sampling team as described in Work Package ES-94-01142/w. Core samples are shipped in a cask and sealed with a waste Tank Sample Seal. All sample shipments are to be labeled with the following information:

WASTE TANK SAMPLE SEAL

Supervisor

Date of Sampling

Shipment No.

Sample No.

Time of Sampling

Serial No.

The sealed and labeled samples are shipped to the laboratory along with the chain-of-custody form. The receipt and control of samples in the WHC 222-S Laboratory are described in laboratory procedure LO-090-101. Receipt and control of samples for the 325 Laboratory are described in procedure PNL-ALO-051.
Table 4: C-105 Chemical, Radiological, and Physical Requirements

<table>
<thead>
<tr>
<th>SOLID ANALYSES</th>
<th>REPORTING LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NAME</td>
<td>C-105 Push Mode Core Sample</td>
</tr>
<tr>
<td>PLAN NUMBER</td>
<td>WHC-SD-WM-TP-259, REV. 1</td>
</tr>
<tr>
<td>PROGRAM CONTACTS</td>
<td></td>
</tr>
<tr>
<td>Safety Screening</td>
<td>Safety Screening</td>
</tr>
<tr>
<td>TWRS</td>
<td>R. D. Schreiber</td>
</tr>
<tr>
<td>222-S Laboratory</td>
<td>J. G. Kristofski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TANK</th>
<th>CORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-105</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY ANALYSES</th>
<th>PREP²</th>
<th>QUALITY CONTROL³</th>
<th>CRITERIA</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>ANAL.</td>
<td>WHC PROCEDURE</td>
<td>% SEG SLDG¹</td>
<td>DUP</td>
</tr>
<tr>
<td>A</td>
<td>DSC</td>
<td>Energy</td>
<td>LA-514-113</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>TGA</td>
<td>% H₂O</td>
<td>LA-560-112</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>ICP</td>
<td>Li</td>
<td>LA-505-151</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>Alpha</td>
<td>Total Alpha</td>
<td>LA-508-101</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY ANALYSES</th>
<th>PREP²</th>
<th>QUALITY CONTROL³</th>
<th>CRITERIA</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>ANAL.</td>
<td>WHC PROCEDURE</td>
<td>% SEG SLDG¹</td>
<td>DUP</td>
</tr>
<tr>
<td>A</td>
<td>Distillation⁹</td>
<td>CN</td>
<td>LA-695-102</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>Sep. & α</td>
<td>counting¹⁰</td>
<td>Pu-239/240</td>
<td>LA-503-156</td>
</tr>
<tr>
<td>A</td>
<td>Persulfate¹</td>
<td>TOC</td>
<td>LA-342-100</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>ICP¹</td>
<td>Fe</td>
<td>LA-505-151</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>ICP¹</td>
<td>Mn</td>
<td>LA-505-151</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>ICP¹</td>
<td>U</td>
<td>LA-505-151</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>IC¹</td>
<td>Br</td>
<td>LA-533-105</td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td>RSST²</td>
<td>Energy</td>
<td>see 9 below</td>
<td>X</td>
</tr>
</tbody>
</table>

¹% SEG SLDG-½ segment, sludge
²d-direct, f-fusion, a-acid, w-water
³PR-precision, AC-accuracy, ea-each, smpl-sample, DUP-duplicate, SPK/MSD-spike or matrix spike duplicate, AB-analytical batch, PB-preparation blank, N/A-not applicable, mtrx-matrix
⁴Units for notification limits and expected range are those listed in the "units" column.
⁵Dry weight basis.
⁶Direct liquid samples may be diluted in acid or water to adjust to proper sample size and/or pH.
⁷Tracer or carrier may be used in place of a spike and results corrected for recovery.
⁸Either serial dilutions or matrix spikes will be performed.
⁹This analysis required if DSC exceeds notification limits. The RSST method, yet to be proceduralized, may be found in WHC-SD-WM-TP-104.
¹⁰Performed only if total alpha exceeds notification limit.
¹¹This analysis required if Li exceeds notification limit.
Table 4: C-105 Chemical, Radiological, and Physical Requirements

LIQUID ANALYSES

<table>
<thead>
<tr>
<th>Project Name</th>
<th>C-105 Push Mode Core Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Number</td>
<td>WHC-SD-WM-TP-259, REV. 1</td>
</tr>
</tbody>
</table>

PROJECT CONTACTS

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>H. Babad</th>
<th>Field Blank - Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Screening</td>
<td>Safety Screening</td>
<td>TWRS R. D. Schreiber</td>
</tr>
<tr>
<td>222-S Laboratory</td>
<td>J. G. Kristofszki</td>
<td>HHF Blank - Required</td>
</tr>
</tbody>
</table>

REPORTING LEVELS

<table>
<thead>
<tr>
<th>FORMAT</th>
<th>Early Notify</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Process Control</td>
</tr>
<tr>
<td>III</td>
<td>Safety Screen</td>
</tr>
<tr>
<td>IV</td>
<td>Waste Management</td>
</tr>
<tr>
<td>V</td>
<td>RCRA Compliance</td>
</tr>
</tbody>
</table>

TANK

<table>
<thead>
<tr>
<th>TANK</th>
<th>#CORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-105</td>
<td>2</td>
</tr>
</tbody>
</table>

PRIMARY ANALYSES

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ANAL.</th>
<th>WHC PROCEDURE</th>
<th>FB & S-LEV LIQ</th>
<th>DUP</th>
<th>SPK/MSD</th>
<th>BLK</th>
<th>CALIB STD</th>
<th>PR</th>
<th>AC</th>
<th>UNITS</th>
<th>NOTIFICATION LIMIT</th>
<th>EXPECTED RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DSC</td>
<td>Energy</td>
<td>LA-514-113</td>
<td>X</td>
<td>d</td>
<td>ea smpl</td>
<td>N/A</td>
<td>N/A</td>
<td>ea AB</td>
<td>±10</td>
<td>90-110</td>
<td>Jg/g</td>
</tr>
<tr>
<td>A</td>
<td>TGA</td>
<td>% H₂O</td>
<td>LA-560-112</td>
<td>X</td>
<td>d</td>
<td>ea smpl</td>
<td>N/A</td>
<td>N/A</td>
<td>ea AB</td>
<td>±10</td>
<td>90-110</td>
<td>wt%</td>
</tr>
<tr>
<td>A</td>
<td>ICP</td>
<td>Li</td>
<td>LA-505-151</td>
<td>d⁶</td>
<td>d⁶</td>
<td>ea smpl</td>
<td>see¹</td>
<td>ea PB</td>
<td>ea AB</td>
<td>±10</td>
<td>90-110</td>
<td>µg/mL</td>
</tr>
<tr>
<td>A</td>
<td>Visual</td>
<td>Organic Layer</td>
<td>LA-519-151</td>
<td>X</td>
<td>d⁶</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>none</td>
<td>presence</td>
<td></td>
</tr>
</tbody>
</table>

QUALITY CONTROL

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ANAL.</th>
<th>WHC PROCEDURE</th>
<th>FB & S-LEV LIQ</th>
<th>DUP</th>
<th>SPK/MSD</th>
<th>BLK</th>
<th>CALIB STD</th>
<th>PR</th>
<th>AC</th>
<th>UNITS</th>
<th>NOTIFICATION LIMIT</th>
<th>EXPECTED RANGE</th>
</tr>
</thead>
</table>

SECONDARY ANALYSES

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ANAL.</th>
<th>WHC PROCEDURE</th>
<th>FB & S-LEV LIQ</th>
<th>DUP</th>
<th>SPK/MSD</th>
<th>BLK</th>
<th>CALIB STD</th>
<th>PR</th>
<th>AC</th>
<th>UNITS</th>
<th>NOTIFICATION LIMIT</th>
<th>EXPECTED RANGE</th>
</tr>
</thead>
</table>

NOTES:

- ¹S-LEV LIQ-liquid taken from the segment level, FB-field blank
- ²d-direct, f-fusion, a-acid, w-water
- PR-precision, AC-accuracy, ea-each, smpl-sample, DUP-duplicate, SPK/MSD-spike or matrix spike duplicate, AB-analytical batch, PB-preparation blank, N/A-not applicable, mtrx-matrix
- Units for notification limits and expected range are those listed in the "units" column.
- Dry weight basis.
- Direct liquid samples may be diluted in acid or water to adjust to proper sample size and/or pH.
- Either serial dilutions or matrix spikes will be performed.
- This analysis required if DSC exceeds notification limits. The RSST method, yet to be proceduralized, may be found in WHC-SD-WM-TP-104.
- This analysis required if Li exceeds notification limit.
- Action limit converted from weight basis to volume basis assuming liquid density of 1.0 g/mL.
5.0 ORGANIZATION

The organization and responsibility of key personnel involved in this tank C-105 characterization project are listed in Table 5. Procedures for both the WHC 222-S Laboratory and the PNL 325 Analytical Chemistry Laboratory are given in Table 4 since it is as yet undecided which laboratory shall receive the samples from tank C-105. Analytical Services shall make the laboratory selection two weeks prior to the sampling event. The laboratory selection will be based on the ability of the laboratory to receive the samples as well as its ability to provide the required analytical data in the requested time. Once the performing laboratory is selected, Analytical Services shall send written notification to inform Sampling Operations of the laboratory to which the samples are to be sent.

<table>
<thead>
<tr>
<th>Name or Title</th>
<th>Organization</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. L. Deichman</td>
<td>Analytical Services</td>
<td>Manager, Analytical Services, Program Management & Integration</td>
</tr>
<tr>
<td>J. G. Kristofzski</td>
<td>222-S Analytical Operations</td>
<td>Program Support Manager of Analytical Operations</td>
</tr>
<tr>
<td>S. G. McKinley</td>
<td>325 Analytical Chemistry Laboratory</td>
<td>Project Manager for Tank Waste Characterization</td>
</tr>
<tr>
<td>H. Babad</td>
<td>WHC Characterization Program</td>
<td>Characterization Program Point of Contact</td>
</tr>
<tr>
<td>R. D. Schreiber</td>
<td>TWRS Characterization Support</td>
<td>Tank C-105 Tank Characterization Plan Cognizant Engineer</td>
</tr>
<tr>
<td>M. J. Kupfer</td>
<td>Process Systems Engineering</td>
<td>Pretreatment Point of Contact</td>
</tr>
<tr>
<td>East Tank Farm Operations</td>
<td>Tank Farms Operations</td>
<td>200 East Tank Farm Notification Limit Point of Contact (373-2689)</td>
</tr>
</tbody>
</table>

6.0 EXCEPTIONS, CLARIFICATIONS AND ASSUMPTIONS

6.1 EXCEPTIONS TO DQO REQUIREMENTS

In the pretreatment DQO, a wide array of analyses has been requested. However, it has been determined by the Pretreatment Program that all of these analyses are not necessary for this sampling event. If necessary, the Pretreatment Program will personally contact the laboratory to run analyses on the archived composite samples. Therefore, the Pretreatment Program has directed that only a 125 g composite sample for process development and a 100 mL composite sample for archive shall be obtained. (Slankas 1994).
In the safety screening DQO, it is specified that cyanide analyses are to be run on a quarter-segment level and that the notification limit for the DSC analysis is 125 cal/g. However, the soon-to-be-released revision of the Safety Screening DQO has changed the requirements such that the cyanide analysis is now to be run on a half-segment level and the DSC notification limit is 115 cal/g (dry weight basis). Therefore, although this Tank Characterization Plan uses the current safety screening DQO, it specifies that cyanide is to be run on a half-segment basis and that notification shall be made if the DSC value exceeds 115 cal/g (dry weight basis).

6.2 CLARIFICATIONS AND ASSUMPTIONS

A number of clarifications and assumptions relating to the notification limits or decision thresholds identified in the applicable DQO efforts need to be made with respect to the analyses in Table 4. Each of these issues are discussed below.

- Any exotherm determined by differential scanning calorimetry (DSC) must be reported on a dry weight basis as shown in equation (1) using the weight percent water determined from thermogravimetric analysis.

\[
\text{Exotherm (dry wt)} = \frac{[\text{exotherm (wt wt)} \times 100]}{(100 - \% \text{ water})}
\]

NOTE: If there is greater than 90 percent water in a sample, converting to a dry weight bases may lead to a large error in the DSC value. However, the conversion is still required.

- The safety screening DQO (Babad and Redus 1994) requires that additional analyses be performed if total alpha activity measures greater than 1 g/L. Total alpha is measured in μCi/g rather than g/L. To convert the notification limit for total alpha into a number more readily usable by the laboratory, it was assumed that all alpha decay originates from Pu-239. The notification limit may then be calculated as shown in equation (2):

\[
\left(\frac{1 \text{ g}}{L}\right) \left(\frac{1 \text{ L}}{10^3 \text{ mL}}\right) \left(\frac{1 \text{ mL}}{\text{density} \ \text{g}}\right) \left(\frac{0.062 \text{ Ci}}{1 \text{ g}}\right) \left(\frac{10^6 \mu\text{Ci}}{1 \text{ Ci}}\right) = 61.5 \ \frac{\mu\text{Ci}}{g}
\]

NOTE: If a density of 1.5 is assumed for the solid material, the notification becomes 41 μCi/g.

- The safety screening DQO does not sufficiently address the analyses of any drainable liquid present. To adequately characterize the tank, the Characterization Program has requested that all analyses performed on the solids for the safety screening DQO, with the exception of total alpha analysis, shall also be performed on any drainable liquids and the field blank.

- The Pretreatment Program has requested 125 grams of the solid composite material for process development work. Two test plan (Lumetta 1994, and Temer 1994) will be used to guide this process development work. Since the Characterization Program is responsible for the taking of tank samples, the
Characterization Program will need to approve the test plan. This approval will not only ensure that the DQO process has been used in the generation of the test plan and that there is justification for the samples, but also that the facility receiving the sample is in a position to adequately handle radioactive material. At such time that the test plan is approved by the Characterization Program, the Characterization Program will direct the performing laboratory, via letter of instruction, to allow shipment of the sample material to the Process Chemistry section of Pacific Northwest Laboratory.

7.0 DELIVERABLES

All analyses of tank C-105 waste material shall be reported as Format I, III, or IV, as shown in Table 4. Additional information regarding reporting formats are found in "Revised Interim Tank Characterization Plan Guidance" (Schreiber 1994a).

7.1 PROGRESS REPORTS

Each laboratory performing analyses on tank C-105 waste material from this core sampling project shall provide monthly status reports to the Characterization Program. This report shall contain 1) a summary of the activities on the analysis of tank C-105, 2) preliminary results to the program, and 3) schedule and cost information on a DQO basis.

Monthly and accumulative costs will be compared to the base as part of the Progress report. Monthly variances greater than 10% and $10,000, and accumulative variances greater than $50,000 from the estimated costs or schedule must be explained in the report. Cost reporting shall consist of the following:

1. budgeted cost of work scheduled
2. monthly cost (actual cost of work performed)
3. year-to-date costs (actual cost of work performed)

Schedule reporting shall consist of the following:

1. monthly schedule
2. year-to-date schedule

7.2 FORMAT I REPORTING

Table 4 contains the notification limits for each analyte. Any results exceeding their notification limits shall be reported by calling the East Tank Farm Operations Shift Manager at 373-2689 and the Characterization Program Office (Schreiber 1994b). This verbal notification must be followed within 1 working day by written communication to the Safety Screening Representative, Analytical Services, Characterization Support, Waste Tanks Process Engineering, and the Characterization Program Office documenting the observations (Schreiber 1994c). Additional analyses for verification purposes may be contracted between the performing laboratory and the contacts above by a revision to this document, or by a memorandum of understanding.
7.3 FORMAT III REPORTING

A Format III report, reporting the results of the primary safety screen analyses, shall be issued to the Safety Screening Representative, Characterization Support, Waste Tanks Process Engineering, the Characterization Program Office, and the Tank Characterization Resource Center and Tank Characterization Database representatives (Schreiber 1994c) within 45 days of receipt of the last segment of the last core sample at the laboratory loading dock. The DSC and TGA scans have been requested due to the interpretive nature of the analysis. If analyses for the safety screening secondary analytes are required, these results shall be provided within 90 days of receipt of the last segment of the last core sample at the laboratory loading dock. No calibration data are requested for these reports. Detailed information regarding the contents of this reporting format are given in (Schreiber 1994a).

7.4 FORMAT IV REPORTING

Analytical results requested for the characterization project of tank C-105 shall be compiled into a Format IV type data package. The data package shall be provided to Analytical Services, the Tank Characterization Database representatives, and the Characterization Program within 216 days of the sampling event. Detailed information regarding the contents of this reporting format are given in (Schreiber 1994a).

In addition to this data package, an electronic version of the analytical results shall be provided to the Tank Characterization Resource Center and the Tank Characterization Database. The data must be available to the Washington State Department of Ecology within 216 days of the sampling event, so this electronic copy must be sent at the time of data package delivery or within 209 days of the sampling event, whichever is earlier, to allow time for data entry. The electronic version shall be in the standard electronic format specified in (Bobrowski 1994).

8.0 CHANGE CONTROL

Under certain circumstances, it may become necessary for the performing laboratory to make decisions concerning a sample without review of the data by the customer or the Characterization Program. These changes shall be documented. Changes may be documented through the use of internal characterization change notices or analytical deviation reports for minor, low-impact changes and documented in applicable laboratory records. All significant changes (such as changes in scope) shall be documented by Characterization Support via an Engineering Change Notice to the Tank Characterization Plan. All changes shall also be clearly documented in the final data package.

Additional analysis of core sample material from this characterization project at the request of the Characterization Program shall be performed according to a revision of this Tank Characterization Plan.
9.0 REFERENCES

Kuhl-Klinger, K. J., 1994, Quality Assurance Plan for Activity Conducted by the Analytical Chemistry Laboratory (ACL), MCS-033, Rev. 1, Pacific Northwest Laboratory, Richland, Washington.

