A thermal mixing model of crossflow in tube bundles for use with the porous body approximation

PDF Version Also Available for Download.

Description

Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 ... continued below

Physical Description

18 p.

Creation Information

Ashcroft, J. & Kaminski, D.A. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 35 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 and 20,000. The tubes are treated as nonconducting. Air and water were considered as working fluids. The effective thermal conductivity was found to be linearly dependent on the tube Reynolds number and fluid Prandtl number, and dependent on the bundle geometry. The porous body thermal mixing model was then compared against numerical models for flows with multiple heated tubes with very good agreement.

Physical Description

18 p.

Notes

INIS; OSTI as DE99002678

Source

  • International conference on porous media and it`s applications, Kona, HI (United States), 16-21 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002678
  • Report No.: KAPL-P--000017
  • Report No.: K--95156;CONF-9606420--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 350934
  • Archival Resource Key: ark:/67531/metadc688086

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 35

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ashcroft, J. & Kaminski, D.A. A thermal mixing model of crossflow in tube bundles for use with the porous body approximation, article, June 1, 1996; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc688086/: accessed July 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.