Computer Support to Run Models of the Atmosphere

Final Report for
Interagency Agreement DOE IAG DE-AI05-830R21383

between

National Aeronautics and Space Administration
Goddard Space Flight Center
Institute for Space Studies
2880 Broadway
New York, NY 10025

and

U.S. Department of Energy
Office of Energy Research

Inez Fung

NASA Goddard Institute for Space Studies
2880 Broadway
New York, NY 10025

August 30 1996

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Our research is focused on a better quantification of the variations in CO₂ exchanges between the atmosphere and biosphere and the factors responsible for these exchanges. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO₂ distribution.

The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO₂ in the atmosphere. The tracer model we use was developed at the Goddard Institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model. We note the GISS tracer model is widely distributed, and forms the basis for the tracer models at Scripps Institution of Oceanography (Keeling et al., 1989), Max-Planck Institute, Hamburg (Heimann, 1995) and CSIRO, Australia (Enting, et al., 1993).

Source/sink distributions need to specified for the tracer model. For some sources and sinks, e.g. fossil fuel combustion, the pattern and magnitudes can be specified with some confidence. For others, e.g. biospheric uptake, the patterns and magnitudes are the major unknowns in the carbon cycle. Where possible, we have compiled information about the "better-known" sources and sinks, and gridded the information on carbon exchanges into a format compatible with the atmospheric models. These source/sink patterns are distributed via CDIAC as DB1006. They form the basis for an international tracer model intercomparison (Law and Rayner, 1995).

To deduce the sought-after magnitudes and patterns of the net uptake by the biosphere and by the ocean, and to test hypotheses about "known" sources and sinks, we developed a new approach for the inverse problem. We first divide the biosphere and ocean into units (e.g. a vegetation type or the North Atlantic between 15N and 50N). For each unit, we assign a hypothetical source strength of 1 GtC/y. The tracer model is run for each unit. The resultant atmospheric CO₂ responses are then combined, with the source strength of each unit as those required to provide a best fit between
the simulated and observed atmospheric CO₂ variations.

Each tracer model experiment is integrated for a minimum of 3 years, so that the north-south gradient stabilizes for the specified source/sink. Typically, we divide the biosphere into 11 vegetation types, and the oceans into 15 regions. Together with the fossil fuel and landuse sources, an investigation of a single carbon budget scenario involves ~ 90 model years.

The tracer model experiments are carried out on the successive generations of computers at GISS. With the tremendous leaps in computational capability, the cpu requirement has dropped from 24 cpu hours/model year on the 1983 Amdahl computers to 5 cpu minutes/model year on the 1996 IBM 6000 RISC station.

References


The publications resulting from the IAG are listed below.


