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ABSTRACT

A study was undertaken to assess the impact of employ-
ing fuzzy technologies in areas of complex weapon sys-
tem design. The technology was examined for use in a
life-cycle cost exercise with the objective of providing a
foundation from which to make service life assessments
and recommendations on future weapon systems. The
issues associated with this problem can be highly sub-
jective and often exhibit a high degree of functional as
well as variable uncertainty, ambiguity and noise. The
study demonstrated that there is a potential role for the
technology, but only in a hybridized environment not as
a stand-alone solution methodology.

1. INTRODUCTION

The activities and effort described in this study are
being performed as part of the Department of
Energy(DOE) Defense Program (DP) activities in Cen-
ter 5100 at Sandia National Laboratories in Albuquer-
que New Mexico. The problem being addressed
involves the assessment of an “optimal” design life for
use in weapon system design activities. This is part of
the larger stockpile stewardship responsibility that
exists in the DOE defense complex. This responsibility
extends to the utilization, design, maintenance, disman-
tlement, and safety of systems in this stockpile. A man-
ifestation of these responsibilities is to provide timely,
cost-effective systems that satisfy all the needs of the
nation. The analysis to follow assumes cost as one met-
ric in assessing optimal system design life.

We find that new requirements are being imposed on
old systems, that technology used to produce these sys-

tems is disappearing, and that engineers knowledgable
in their form and function are retiring or moving on to
other responsibilities. The full slate of problems we are
faced with include reducing the life-cycle cost of these
systems, shortening the design and production cycle
times, and for the near term retaining a design and pro-
duction capability. The simple belief is that a reduction
in programmatic cost can be realized by significantly
increasing the design or service life of weapon systems
currently in stockpile. A detailed life-cycle cost analy-
sis employing modern optimization technologies might
answer the problem of optimum design life, but the
broader scope of issues and their lack of definitive func-
tionality could not easily or defensibly be addressed
with these technologies.

The fuzzy technology has been around for some time,
but has recently gained exposure, principally in the
areas of process and control engineering. A number of
attributes of the fuzzy technologies struck us as a means
for addressing issues in the “gray” areas of technical
analysis. Characteristics of a fuzzy model (Cox, 1994)
include (1) imprecise control parameters, (2) a multiple
number of potentially conflicting or elastic relation-
ships, (3) inherent uncertainties in the contro! structure
as well as a classical probabilistic result, and (4) the
problem being addressed is highly complex, poorly
understood and/or nonlinear. These characteristics cap-
ture much of the problem we are faced with assessing
optimum design for our weapon systems.
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2. FUzzY TECHNOLOGY DESCRIPTION

This short section provides a perspective of the ele-
ments characteristic of the “fuzzy” technologies which
provide an engineer with another tool that can be used
to solve increasingly complex design, decision, and
analysis problems. The objective of this work and this
section in particular is to evaluate a technology for use
by engineers in solving complex problems and not to
evaluate the fundamental theoretical aspects of the tech-
nology (This would be well beyond the scope of this
paper.). The technology provides the engineer with
another “mathematical construct” for mapping design
or analysis variables to a solution space. Function the-
ory defines operations and set characteristics which per-
mit us to map variables within an infinitely continuous
real space. Boolean algebra provides us with the ability
to perform relational mappings in discrete space. It
appears that the fuzzy technologies provide us with a
capability to perform a modified form of mapping
within a variable space of our definition and design.
The mathematics provide us with the operators and a set
of requirements for the variable space.

The essence of “fuzzy” technology is the unique nature
of its underlying set theoretic characteristic. In classi-
cal functional theory we can immediately interpret the
validity or truth of a solution variable given the inde-
pendent parameter values. For example, an ideal gas
law mapping between pressure and specific volume,

each set to zero, and a temperature value of 1.0x10° is
known to be invalid. In the area of fuzzy technologies
this result must be assessed before a degree of validity
or truth can be ascertained. It is the set theoretic char-
acteristic of this technology that enables and requires
the follow-on assessment.

3. MODEL DEVELOPMENT

In order the assess the utility of “fuzzy” technology for
use in the design life optimization problem, a C++ code
was written that captured the fundamental characteris-
tics of the technology. The code was restricted to a lim-
ited number of operator concepts, rule generality, and
defuzification methodologies. The objective of the
code was to provide an operational test bed to gain
some experience with this approach to solving design
problems and to provide the framework from which the
assessments on the utility of the technology could be
made.

C++ was chosen as the language tool because of past
experience in the language and the ability to develop
rapid prototypes of new algorithms, The operators
were initially limited to Zadah’s rules of fuzzy set com-

binatorics and a subset of defuzification methodologies.
The observed nonlinearity of the problem indicated that
some variables were solutions to a subset of the model
parameters. This required a rather complex control
structure for an evaluation algorithm.

3.1 Validation

There does not appear to be formal mathematical theo-
rems which can be used to validate a model based on
fuzzy technologies. One reference (Carraanza, 1992)
provided an interesting approach for assessing the sta-
bility of fuzzy controllers. This validation methodol-
ogy is well suited for the controller situation since it is
possible to delineate acceptable states for the fuzzy con-
troller. Validating fuzzy technologies in a system
design effort is more difficult since we may only be able
to bound the problem. The method does not appear to
lend itself to assessing the accuracy of the solutions
which is the validation problem that we are faced with.

A solution to the problem of validation is to assess the
accuracy of the model on a problem of comparable
characteristics, and by inference postulate the accuracy
of a models. Since problems in system design are
expected to be highly non-linear it was decided that a
fuzzy interpretation to the ideal gas law could be used
in a validation process:
T= (P-v)/(n-R) ¢))

Table 1 provides a listing of the initial model variables
and the semantic levels or fuzzy sets that represented

the descretized levels associated with the model vari-
ables.

Table 1: Validation variables, hedges, and linguistic

sets
Domain
Variable | Hedges | Sets
TEMPERA- | VERY | HIGH | MOD- | LOW
TURE ERATE
PRESSURE HIGH | MOD- | LOW

ERATE

SPECIFIC HIGH | MOD- | LOW
VOL. ERATE

Also listed in the table are the “hedges” used in the val-
idation problem. In fuzzy technologies, a hedge (Cox,
1994) is a technical term that represents a class of func-
tional modifiers applied to the underlying fuzzy set
membership functions. These modifiers tend to inten-
sify or diffuse membership intensity.




Three semantic levels were selected for each of the
model variables in the problem. The membership func-
tions selected during the initial tests were low-order lin-
ear functions. The functions for temperature are
presented in Figure 1. A higher order set of member-
ship functions was used later in the validation process
and is plotted in Figure 2.
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Figure 1. Linear membership functions for the temper-
ature model variable.
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Figure 2. Nonlinear membership functions for the tem-
perature model variable,

A very simple process was used to define the initial set
of validation rules. The domain of the model variables

was selected to range from -100 °C to 1300 °C, with a
corresponding range for the pressure and specific vol-
ume. A combinatorics matrix was used to represent all
the combinations of semantic levels for the independent
model variables, This matrix is presented in Table 2. A
fuzzy rule was written for each element of the combina-
torics matrix. The rules were of the form:

if PRESSURE is LOW and SP_VOL is LOW then
TEMPERATURE is VERY LOW
The initial calculations used the linear and the nonlinear
membership functions in conjunction with the nine
rules developed from the matrix in Table 2. The
domain used for the pressure variable was 0.1 to 0.5

MPa, while the specific volume domain ranged from

05 to 0.9 m*/Kg.
Table 2: Rule combinatorics for solution space,
temperature.
Low Moderate High
Low VERY MODER-

ATE

Moderate

High

The results of these calculations are provided in Figures
3A through 3D.

Fuzzy Gas Law
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Figure 3. (A) Linear fuzzy representation of the ideal
gas law. (B) Nonlinear fuzzy representation of the ideal
gas law. (C) Semantic levels reduced to HIGH and
LOW. (D) Reduced rule set.

The points of interest are the near-identical behavior
between the linear and nonlinear models. This provides
additional verification that the membership function
shape is not a strong player in these coarsely des-
cretized problems. The effect of using a coarser des-
cretization of the semantic levels can be seen in Figure
3C. The results exhibit less detail than those in Figures
3A and 3B, but the essential levels and trends associ-
ated with the underlying model have been preserved.

The last test involved reducing the rule set. The idea
was to assess the possibility of using a design of experi-
ment technique in the generation of rule sets. The rules
that were removed consisted of those highlighted in
Table 2. From Figure 3D, we can see that the perfor-




mance of the modified rule set is severely degraded,
especially in the regions covered by the removed rules.
Further analysis needs to be conducted in order to
assess “completeness” issues associated with fuzzy rea-
soning algorithms, It appears that a larger problem
needs to be defined and a rigorous application of Tagu-
chi techniques used in order to assess the issues of com-
pleteness that surfaced with this very simple analysis.

Tests were also exercised to assess the impact of the dif-
ferent defuzification algorithms used in the preliminary
code. Three methods were examined: (1) the centroid
method, (2) the averaged maximum method, and (3) a
maximum technique that selects the leading edge of the
maximum truth platean. The centroid method is simply
a weighted average over the entire solution variables’
domain space. The weighting consists of the product of
the domain value and the associated degree of truth.
The averaged maximum method represents the
weighted average of the maximum truth plateau of the
solution variable. Each method produced unique
results. The results in Figure 3 represent the utilization
of the averaged maximum method. The centroid
method provided results which most closely approxi-
mated the mean shape of the gas law. However, the
results at the extremes were clearly inferior to those
generated by the maximum methods. The analyses to
follow will use the averaged maximum technique for
defuzification. :

3.2 Preliminary Expansion

The next test that had to be performed consisted of an
expansion into the treatment of “issues.” The com-
plexity of the problem requires that a number of issues
had to be resolved prior to a final solution of the prob-
lem variables. In order to test issue resolution, an addi-
tional model variable was added to the decision
problem. The variable, RADIATION, was assumed to
affect gas temperature directly and indirectly through
the specific volume, (It should be noted that this vari-
able is an artificial construct and was used for test pur-
poses only.) The added influences are shown by the
dotted lines in Figure 4.

The physics of this problem is non-real and has been
performed merely for code validation activities. In this
scenario the specific volume is determined based on a
rule set relating radiation and the specific volume of the
gas. Once the specific volume has been estimated via
the defuzification process, another rule set was executed
that performed the assessment of temperature based on
the additional model variable and the rule set used for
the first part of the validation process.

Validation Problem

Temperature ¢#

Figure 4. Influence diagram for the idealized ideal gas
validation problem

3.3 Generic Observations

A number of fuzzy technology observations can be
made at this juncture of the study. The observations
pertain to (1) the number of semantic levels for use in
fuzzy analysis problems, (2) the completeness of the
rule set, (3) the defuzification methodologies, and (4)
the order of membership functionality. The resolution
of the solution variable results is directly proportional
to the number of semantic levels and rules employed in
the analysis. If a great deal of resolution is required
increase the number of levels. It has also been observed
that there may be a completeness issue associated with
the implemented rule set.

Each defuzification method possesses varying degrees
of suitability depending on the problem being worked.
The centroid method may be appropriate for policy
analyses where detail is unimportant. The maximum
edge method may be best sunited for use in the safety
analysis arena where model conservatism is important.
The averaged maximum seems to be suited best for
optimization problems such as the design life problem.
Finally, there appears to be an insensitivity to the func-
tional form of the membership functions associate with
the semantic levels. It appears that each situation must
be assessed on its’ own merits.

4. DETAILED PROBLEM DESCRIPTION

These last sections examine the potential for the devel-
opment of a limited service-life estimation model. The
objective of the model was to provide sufficient evi-
dence of the utility or nonutility of using fuzzy technol-
ogies in the estimation of weapon system service life.
As indicated earlier the performance metric identified is
the life-cycle cost for a weapon system. Generic ele-
ments comprising a life-cycle costing model (Fabrycky,
1991) consist of (1) research and development costs, (2)
production costs, (3) operations and maintenance sup-




port costs, and (4) retirement and disposal costs. Figure
5 provides a high-level view of the problem being
addressed. The cost components have been broken out
in slightly more detail, but do not address the level of
detail needed to perform a life-cycle cost analysis. The
left side of the figure is an indicator of the direct effects
that system service life would play in a costing model:
the indirect effects are not detailed in this figure. A sub-
set of the indirect effects are included in Figure 6.

4.1 Information Uncertainties

One problem that has to be considered is the different
type of uncertainty associated with the model depicted
in Figure 5. The uncertainty associated with the cost
parameters can be attributed to variabilities in the inde-
pendent variables of the model. Classical statistical
techniques should be used to assess the effects of this
uncertainty, The second class of uncertainty is that
associated with parameters directly affected by service
life and the indirect effects on the cost variables of the
life-cycle cost model. This uncertainty can be classified
as a functional uncertainty which is a lack of under-
standing of the underlying functional relationship or
mapping between the independent variables and the
solution variables.

It was felt that there are two generic approaches to solv-
ing this hybrid problem. One approach is to use the
fuzzy technology to determine the cost associated with
selected cost elements of the life-cycle cost model. The
second approach is to use the fuzzy model to “modify”
the cost estimates provided through a more traditional

functional model. The implementation of the two
approaches differed only in the addition of an extra rule,
which in effect constrained the results of the predictive
facet of the fuzzy model.
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Figure 6. Indirect effects of service life.

The object of this phase of the service life activity was
not to generate a solution but to assess technologies
which might be employed to develop a solution. The
variables selected for inclusion in this preliminary
model consisted of the following: (1) “service life,” (2)
“engineering skills,” (3) “mission complexity,” (4)
“program risk,” (5) “development cost,” (6) “test cost,”
(7) “operations support,” (8) “materials selected,” (9)
“testing complexity,” and (10) “disposal complexity.”

Combined Analysis Model
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Figure 5. Service life optimization model with fuzzy and functional elements identified.




This is not an all-inclusive list of problem space vari-
ables, and for purposes of this analysis each of the 10
variables was not considered in equal detail. Each of
these domain variables was assigned either two or three
semantic levels for inclusion in the model. In addition,
one or two hedges were assigned to enable semantic
intensification or diffusion in the problems space. The
rule set used in this study is provided in the Table 3
below. The row separations correlate with the separa-
tion of the issues that had to be addressed prior to the
indirect cost analyses.

The rule sets addressed the issues of (1) programmatic
risk, (2) test complexity, (3) materials selection, and (4)
operational support. The final two rule sets were used
to solve for development and test costs. The last two
rule sets contain a highlighted rule which contains only
the consequent part of a standard rule predicate. 1t is
these extra rules which were required to transition the
model from a predictive algorithm to that of a proscrip-
tive model. These rules use an “ABOUT” construct
which in the technology is a fuzzified representation for

a number. Thus ABOUT 5 represents the fuzzified
approximation to the value 5. A number of the variables
used in this model do not possess a classical measurable
descriptive scale. The variables associated with “engi-
neering skill level,” or “programmatic risk™ are metrics
which do not possess an absolute scale. At best, the
scales associated with these and similar variables can
only be used in studies concerned with relative effects.

42 Results Analysis

A series of 25 cases were run to span a spectrum of ser-
vice life, engineering skill levels and mission complex-
ity. The service-life assessments ranged from 10 to 90
years. The other two variables are founded on a relative
scale. Four sets of these cases were run to assess the
effects of different defuzification algorithms and to
assess the differences between the predictive and the
proscriptive versions of the model. The results of these
first set of predictive calculations is presented in Figure
7.

This figure provides a look at two of the three indepen-

Table 3: Fuzzy rule sets used in the life cycle cost feasibility study.

Rules by “issue”

if SERVCIE_LIFE is LONG and MISSION_PROFILE is COMPLEX then PGM_RISK is VERY HIGH
if SERVCIE_LIFE is LONG and SKILLS is NOVICE then PGM_RISK is VERY HIGH

if SERVCIE_LIFE is SHORT and SKILLS is HIGHLY CAPABLE then PGM_RISK is VERY LOW

if SERVCIE_LIFE is NOMINAL and SKILLS is CAPABLE then PGM_RISK is LOW

if SERVCIE_LIFE is NOMINAL and SKILLS is NOVICE then PGM_RISK is SOMEWHAT HIGH

then TEST_COMPLX is DECREASED

then TEST_COMPLX is SOMEWHAT DECREASED

if SERVCIE_LIFE is SHORT and MISSION_PROFILE is ROUTINE

if SERVCIE_LIFE is LONG and MISSION_PROFILE is COMPLEX
then TEST_COMPLX is SIGNIFICANTLY INCREASED
if SERVCIE_LIFE is NOMINAL and MISSION_PROFILE is ROUTINE

if SERVCIE_LIFE is LONG then MATERIALS is EXOTIC

if SERVCIE_LIFE is NOMINAL then MATERIALS is SOMEWHAT EXOTIC
if SERVCIE_LIFE is SHORT then MATERIALS is VERY ROUTINE

if SERVCIE_LIFE is LONG then OPS_SUPPORT is VERY HIGH
if SERVCIE_LIFE is SHORT then OPS_SUPPORT is SOMEWHAT LOW

then DEV_COST is ABOUT5S

if PGM_RISK is HIGH and MATERTALS is EXOTIC then DEV_COST is HIGH

if TEST_COMPLX is INCREASED then DEV_COST is VERY HIGH

if TEST_COMPLX is SOMEWHAT DECREASED then DEV_COST is LOW

if PGM_RISK is LOW and MATERIALS is ROUTINE then DEV_COST is VERY LOW

if PGM_RISK is LOW and MATERIALS is EXOTIC then DEV_COST is SOMEWHAT HIGH
if PGM_RISK is VERY LOW and MATERIALS is ROUTINE then DEV_COST is VERY LOW

if MATERITALS is ROUTINE then TEST_COST is LOW
then TEST_COST is ABOUT7

if MATERIALS is EXOTIC then TEST_COST is SOMEWHAT HIGH




dent variables that were considered in these analyses.
The average maximum defuzification is far more indic-
ative of the underlying coarseness of the semantic lev-
els selected. The centroid defuzification method, which
is a weighted average of cost over the entire domain, is
less sensitive to the underlying model coarseness. As
expected, increases in service life or mission complex-
ity results in increases in system cost. In this case, sys-
tem cost includes only development and test cost.

Costing (Ave Max)

Costing (Centroid)

Figure 7. Results of costing analysis using “average
maximum” and “centroid” defuzification.
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The test runs were set up based on Taguchi’s design of
experiment techniques (Phadke, 1989) and as a result
provide a great deal more information if statistically
analyzed. Taguchi techniques involve the utilization of
a design-of-experiment technique in which orthogonal
arrays are used to proscribe combinations of variable
settings to be used in a series of “experiments.” For
each combination of variable settings, a calculation or
experiment is done to assess the performance of the sys-
tem under consideration. Once all trials or experiments
are completed, a statistical analysis can be performed
which provides sensitivity information of the model or
systems variables. The method also warks very well in
performing noise analysis calculations on system
designs. The use of the orthogonal arrays preserve cer-
tain statistical properties which permit the subsequent
analysis required. The results of the Taguchi analysis
are provided in Figure 8.

The results of the Taguchi analysis show that “for the
rule set selected for this study,” service life is the most
important design parameter identified in these analyses.
It must be remembered that this analysis is not assess-

Figure 8. Results of the Taguchi analysis for the predictive fuzzy cost model.
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Figure 9. Results of costing analysis from the proscriptive model.




ing parameter sensitivities as is the case in a traditional
statistical analysis, but is assessing the sensitivity of the
variables coupled with the rule base. A different rule
base may reveal a different parametric sensitivity, It
needs to be remembered that the sensitivities represent
the effect that a parameter exhibits over an average of
the other analysis parameters. In this case, service-life
sensitivity represents the sensitivity of service life aver-
aged over a range of values representing engineering
skills and mission complexity. The figure shows that
service life on the average is an order of magnitude
more important than the other two parameters.

As can be seen from the results of the proscriptive
model presented in Figure 9, service life is the most
important parameter in the fuzzy model, but the relative
importance has been severely constrained. The results
fall much closer to the constrained values of 1.2 M$,
which was an arbitrarily selected fuzzy limit. Similar to
the predictive model, the centroid defuzification tends
to smooth the effects of the underlying semantic level
coarseness.

5. CONCLUSIONS

The fuzzy technologies examined in this study appear
to possess a degree of utility applicable to the analysis
of highly complex problems that possess a significant
degree of functional as well as parametric uncertainty.
The technology appears to provide a unique method for
constructing metrics for abstract concepts such as engi-
neering skill level or programmatic risk. The technol-
ogy provides a foundation upon which it is possible fo
operate with subjective and conflicting information. It
seems that the optimal method of implementation of
this technology is in a hybrid environment in which the
technology’s strengths are used to augment a traditional
analysis methodology.

The fuzzy approach to solving the functionally ambigu-
ous aspects of the life-cycle cost analysis problem
appears to be appropriate when melded with traditional
statistical technologies. The use of the technique in a
purely predictive mode is extremely labor intensive and
potentially difficult to validate on complex problems.
The technology used in a proscriptive mode is ideally
suited for this problem. Classical functional theory can
provide the foundations from which base cases can be
generated; the fuzzy technology can be used to asses the
impact of uncertain issues such as new technologies,
processes, missions, or environments on design issues.
Fuzzy technologies have-a role in the analysis of com-
plex design problems but is not a panacea.

The models need to be refined before they can be used

in a production environment and additional work needs
to be performed to develop an improved interface
between fuzzy technology and traditional functional
methodologies. The results observed in the preliminary
model verification seem to indicate that there may be
issues associated with completeness, These issues of
rule completeness need to be addressed to aid in the
model validation process. Finally, there appears tobe a
unique opportunity to examine a union of fuzzy tech-
nologies and Taguchi techniques to assess the impact of
rules in a model. Taguchi techniques are typically
applied to problems in which parametric sensitivities
are being assessed. Fuzzy technologies deal with func-
tional uncertainty, and it might prove useful if the pow-
erful Taguchi methodologies could be generalized and
provide benefit in this technology area to assess the
impact of a rule or set of rules in a model.
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