GaInAsSb Materials for Thermophotovoltaics

G. Charache, C. A. Wang, et. al.

December 1996

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States, nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

KAPL ATOMIC POWER LABORATORY

SCHENECTADY, NEW YORK 12371

Operated for the U. S. Department of Energy by KAPL, Inc. a Lockheed Martin company
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
GaInAsSb MATERIALS FOR THERMOPHOTOVOLTAICS*

C.A. WANG, G.W. TURNER, M.J. MANFRA, H.K. CHOI, AND D.L. SPEARS
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173

ABSTRACT

Ga_{1-x}In_xAs_{1-y}Sb_y (0.06 < x < 0.2, 0.05 < y < 0.18) epilayers were grown lattice-matched to GaSb substrates by organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE). For lattice-matched alloys, mirror-like surface morphologies were obtained by both OMVPE and MBE. The 4K photoluminescence (PL) of all layers had a full-width at half-maximum (FWHM) of less than 10 meV for PL peak emission < 1.9 μm. PL FWHM increased to 30 meV for peak emission ~2.12 μm for OMVPE-grown layers. Nominally undoped layers are p-type with typical 300 K hole concentration of ~9 x 10^{15} cm^{-3} and hole mobility ~ 450 to 580 cm^{2}/V·s for OMVPE-grown layers. p- and n-type doping is reported for layers grown with either technique. The ideality factor of diode structures is ~2 for both techniques.

INTRODUCTION

Thermophotovoltaic systems in which thermal radiation is converted to electricity through the use of a photovoltaic cell, are experiencing revived interest as the properties of low-bandgap semiconductor materials continue to improve [1]. To achieve high utilization of thermal radiation, the semiconductor cutoff wavelength should closely match the dominant wavelength of the thermal source. For TPV systems operating in the temperature range 1100 to 1500K, the peak in emissive power varies from 1.9 to 2.6 μm. This wavelength range can be satisfied by Ga_{1-x}In_xAs_{1-y}Sb_y alloys which can be grown lattice-matched to either InAs or GaSb substrates. However, this alloy system exhibits a large miscibility gap [2,3] which limits the equilibrium growth of stable alloys to a cutoff wavelength of 2.39 μm [4]. By using non-equilibrium growth techniques such as molecular beam epitaxy (MBE) and organometallic vapor phase epitaxy (OMVPE), metastable alloys can be grown [5,6]. In this paper, we report the growth Ga_{1-x}In_xAs_{1-y}Sb_y alloys by OMVPE and MBE and describe the materials properties as the alloy composition approaches the immiscibility region. We also discuss diode characteristics as they relate to the performance of TPV cells.

*This work was sponsored by the Department of Energy under AF Contract No. F19628-95-C-0002. The opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Air Force.
Ga$_{1-x}$In$_x$As$_{1-y}$Sb$_y$ epilayers were grown on Te-doped GaSb or semi-insulating GaAs substrates by OMVPE and MBE. For OMVPE, solution trimethylindium (TMIn), triethylgallium (TEGa), tertiarybutylarsine (TBAs), and trimethylantimony (TMSb) were used as precursors with diethyltellurium (DETe) (50 ppm in H$_2$) and dimethylzinc (DMZn) (1000 ppm in H$_2$) as n- and p-type doping sources, respectively. Layers were grown in a vertical rotating-disk reactor with the carrier gas H$_2$ at a flow rate of 10 slpm and reactor pressure of 150 Torr. TEGa, TBAs, and TMSb were selected as the organometallic precursors based on their low pyrolysis temperatures and minimal tendency toward adduct formation [7]. The group III mole fraction was typically 3.5 to 4 x 10$^{-4}$ which resulted in a growth rate of ~2.7 µm/hr. The V/III ratio was varied from 0.9 to 1.7. Substrates were (100) oriented 2 degrees toward [110]. The growth temperature was 575°C for most layers, with some layers grown at 525 or 550°C.

A solid-source MBE system with Ga, In, Sb$_4$, and As$_2$ provided by a valved As cracker was used as described previously [8]. The growth temperature was 500-510°C, and the growth rate was ~ 1 µm/hr. Be was used as the p-type dopant and GaTe as the n-type dopant.

The surface morphology was examined using Nomarski contrast microscopy. Carrier concentration and mobility of GaInAsSbSb epilayers, which were grown at least 3 µm thick on semi-insulating GaAs substrates, were obtained from Hall measurements based on the van der Pauw method. Photoluminescence (PL) was measured at 4 K. Double-crystal x-ray diffraction (DCXD) was used to evaluate the structural quality and degree of lattice mismatch to GaSb substrates. The composition of epilayers was determined from the room temperature energy gap dependence on composition as reported in reference [3]. Since band-tailing effects might be significant for low-band gap alloys, the room temperature energy was estimated by subtracting 0.065 eV from the 4K PL peak energy.

Ohmic contacts to p- and n-GaSb were formed by depositing Ti/Pt/Au and Au/Sn/Ti/Pt/Au, respectively, and alloying at 300°C. The I-V characteristics were measured on 500 x 500 µm devices that were cleaved.

RESULTS

Figure 1 shows the surface morphology of 2-µm-thick Ga$_{1-x}$In$_x$As$_{1-y}$Sb$_y$ layers of various compositions grown by OMVPE and MBE. The growth temperature was 575°C and the V/III ratio was 1.15. The surface morphology is mirror-like to the eye for each layer. However, Nomarski contrast microscopy revealed a wavy texture, similarly reported for MBE-grown layers [6], which increased with increasing In content. A smoother morphology could be obtained by reducing the growth temperature to 550 or 525°C. The morphology for the MBE-
grown layers which was also mirror-like did not change with various alloy compositions. The layers shown here are closely matched to the GaSb substrate with a lattice-mismatch $\Delta a/a < 1.5 \times 10^{-3}$. Layers with $\Delta a/a - 3-4 \times 10^{-3}$ exhibited a crosshatch surface morphology. The surface morphology is sensitive to V/III as shown in Figure 2 for OMVPE layers grown with $\text{TMIn/(TEGa + TMIn)} = 0.23$. Below a minimum V/III ratio, a metal-rich surface is obtained. Increasing V/III ratio above the minimum value of 1.05 resulted in an increased surface texture.

PL spectra measured at 4K showed only a single peak. Results of full-width at half-maximum (FWHM) as a function of PL peak emission E_p are shown in Figure 3 along with data previously reported by OMVPE [5,9], MBE [10], and liquid phase epitaxy [11]. Narrow FWHM (< 10meV) are obtained for all layers with energy transitions below ~0.64 eV, but the PL spectra is broadened considerably for the OMVPE-grown layers with lower E_p. On the other hand, the FWHM for layers grown by MBE was not as sensitive to E_p.

DCXD scans for OMVPE-grown Ga$_{0.93}$In$_{0.07}$As$_{0.08}$Sb$_{0.92}$ and Ga$_{0.81}$In$_{0.19}$As$_{0.16}$Sb$_{0.84}$, 0.7 µm thick, are shown in Figure 4 and are compared with simulations based on the Taupin-Tagachi solution of dynamical x-ray diffraction. The scan for Ga$_{0.93}$In$_{0.07}$As$_{0.08}$Sb$_{0.92}$ shows Pendellosung fringes which are an indication of high structural quality. Conversely, the scan for Ga$_{0.81}$In$_{0.19}$As$_{0.16}$Sb$_{0.84}$ shows a broadened x-ray peak and loss of fringes, which might be an indication of alloy nonuniformity or clustering similar to observations in GaInAsSb grown near the miscibility gap [12]. Layers grown by MBE did not exhibit such x-ray broadening.

The electrical properties of GaInAsSb layers grown on SI GaAs substrates by OMVPE are shown in Figure 5. Since the lattice mismatch between GaInAsSb lattice matched to GaSb and GaAs is 8%, growth was first initiated with a GaSb buffer layer grown at 550°C. The hole concentration and mobility depended strongly on the presence of the GaSb buffer layer. These layers have a typical hole concentration of ~9 x 1015 cm$^{-3}$ and hole mobility ~ 450 to 580 cm2/V-s. Nominally undoped GaInAsSb layers grown by MBE were p-type with a hole concentration of 2 x 1016 cm$^{-3}$, and hole mobility of ~ 300 cm2/V-s.

The electron and hole concentration of GaInAsSb layers grown by OMVPE are shown in Figure 6 for layers doped with DETe and DMZn, respectively. The electron concentration measured at 300K ranged from 3.4 x 1017 cm$^{-3}$ to 2.05 x 1018 cm$^{-3}$ with corresponding mobility values of 4640 cm2/V-s and 1460 cm2/V-s, respectively. For p-GaInAsSb, the hole concentration measured at 300K ranged from 7.8 x 1016 cm$^{-3}$ to 1.5 x 1018 cm$^{-3}$ with corresponding mobility values of 430 and 260 cm2/V-s, respectively. For MBE-grown layers, the maximum electron concentration that has been obtained is 2 x 1018 cm$^{-3}$ with a mobility of
2300 cm2/V-s, and the maximum hole concentration is 5×10^{19} cm$^{-3}$ with a mobility of 50 cm2/V-s.

Test structures that consist of p-on-n GaInAsSb epilayers were grown to evaluate junction characteristics. Figure 7 shows the I-V curve for a typical device. The ideality factor at low current levels is ~ 2.4. There is a relatively large leakage current at low bias, which may be related to tunnelling [13]. However, it will not affect the performance of TPV cells which operate at very high current densities. The series resistance is relatively high because of the potential barriers at the n-GaSb substrate/n-GaInAsSb and p-GaInAsSb/p-GaSb interfaces.

CONCLUSIONS

GaInAsSb epilayers were grown lattice-matched to GaSb substrates by OMVPE and MBE. For OMVPE-grown layers, a degradation in the structural and optical properties was observed as the composition of the alloy approached the miscibility gap. Layers grown by MBE, however, did not exhibit such changes. The series resistance of diode structures can be reduced by grading the interfaces and/or by heavily doping the interface regions.

ACKNOWLEDGMENTS

The authors gratefully acknowledge D.R. Calawa, J.W. Chludzinski, M.K. Connors, L. Krohn, R.J. Poillucci, and V. Toddman-Barns for technical assistance, K.J. Challberg for manuscript editing, and B-Y. Tsaur for continued support and encouragement.

REFERENCES

FIGURE CAPTIONS

Figure 1 Surface morphology of GaInAsSb epilayers grown on GaSb substrates by MBE (top) and OMVPE (bottom). Various compositions as indicated.

Figure 2 Surface morphology of OMVPE-grown GaInAsSb with various V/III ratios.

Figure 3 Full-width at half-maximum of 4K photoluminescence spectra of GaInAsSb layers grown on GaSb substrates.

Figure 4 Double-crystal x-ray diffraction scans of a) Ga_{0.93}In_{0.07}As_{0.08}Sb_{0.92} and b) Ga_{0.81}In_{0.19}As_{0.16}Sb_{0.84}.

Figure 5 Electrical properties of nominally undoped GaInAsSb as a function of GaSb buffer layer thickness: a) hole concentration and b) hole mobility.

Figure 6 Dependence of a) electron concentration on diethyltellurium mole fraction and b) hole concentration on dimethylzinc mole fraction.

Figure 7 I-V curve of 500 x 500 μm p-n GaInAsSb diode structure.
Figure 3
Figure 4a

0.73 μm Ga_{0.93}In_{0.07}As_{0.98}Sb_{0.92}

GaSb (001) substrate

- Simulation
- X-Ray Data

INTENSITY (counts/s)

DIFFRACTION ANGLE (arc sec)
0.73μ Ga_{0.81}In_{0.19}As_{0.16}Sb_{0.84}

GaSb (001) substrate

Simulation
X-Ray Data

INTENSITY (counts/s)

DIFFRACTION ANGLE (arc sec)
Figure 6b

DMZn MOLE FRACTION

HOLE CONCENTRATION AT 300 K (cm⁻³)