Upgrading low rank coal using the Koppelman Series C process

PDF Version Also Available for Download.

Description

Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, ... continued below

Physical Description

15 p.

Creation Information

Merriam, N.W., Western Research Institute January 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, the low-heating value limits the markets for PRB coal to boilers specially designed for the high- moisture coal. Thus, the advantages of the low-sulfur content are not available to many potential customers having boilers that were designed for bituminous coal. This year about 250 million tons of coal is shipped from the Powder River Basin of Wyoming. The high- moisture content and, consequently, the low-heating value of this coal causes the transportation and combustion of the coal to be inefficient. When the moisture is removed and the heating value increased the same bundle of energy can be shipped using one- third less train loads. Also, the dried product can be burned much more efficiently in boiler systems. This increase in efficiency reduces the carbon dioxide emissions caused by use of the low-heating value coal. Also, the processing used to remove water and restructure the coal removes sulfur, nitrogen, mercury, and chlorides from the coal. This precombustion cleaning is much less costly than stack scrubbing. PRB coal, and other low-rank coals, tend to be highly reactive when freshly mined. These reactive coals must be mixed regularly (every week or two) when fresh, but become somewhat more stable after they have aged for several weeks. PRB coal is relatively dusty and subject to self-ignition compared to bituminous coals. When dried using conventional technology, PRB coal is even more dusty and more susceptible to spontaneous combustion than the raw coal. Also, PRB coal, if dried at low temperature, typically readsorbs about two- thirds of the moisture removed by drying. This readsorption of moisture releases the heat of adsorption of the water which is a major cause of self- heating of low-rank coals at low temperature.

Physical Description

15 p.

Notes

OSTI as DE98051729

Source

  • Advanced coal-based power and environmental systems `97 conference, Pittsburgh, PA (United States), 22-24 Jul 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98051729
  • Report No.: DOE/MC/30127--98/C0943
  • Report No.: CONF-970772--
  • Grant Number: FC21-93MC30127
  • DOI: 10.2172/293400 | External Link
  • Office of Scientific & Technical Information Report Number: 293400
  • Archival Resource Key: ark:/67531/metadc687720

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 10, 2015, 9:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Merriam, N.W., Western Research Institute. Upgrading low rank coal using the Koppelman Series C process, report, January 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc687720/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.